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SOYBEAN APPLIED GENOMICS

Development of strategies to accelerate soybean breeding and improvement
« (Genetic natural variation exploration
 |dentification of causal genes

» Tools for applied genomics
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BREEDING IS NOT PRECISE ENOUGH YET!

Marker-assisted breeding

« A marker (M) can be located far from a gene that underlies a phenotype of interest
How to proceed? Identification of causal genes with causative mutations (CMs)

 Eraof sequencing

« Association methods
k-M bp apart!
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GWAS FOR MORE PRECISE BREEDING

GWAS (Genome-wide association study)

 Associates a phenotype with a genomic locus > associated variant positions, tagging marker (TM)

» Assists in identifying CM and thus could accelerate soybean breeding and improvement
« Statistical method dependent on data set size and quality of input data
Inputs: genotype + phenotype
 Phenotype: quantitative or qualitative, proportional, disproportional, rare
« Genotypic data:
- Low-density genotype = genotyping data (limited representation of natural variation)

- Whole genome sequence = resequenced data ($$3$)



GWAS WITH GENOTYPING DATA

GWAS Known Association (marker) p1
. @,[ $5715604950 |

-Iogm(P)

1 2 3 4 5 6 7 8 9 10 11 1213 15 17181920

Chromosome position
Tagging P1 locus for loss of trichomes
« CM not present

« Standard GWAS follow-up: guessing genes based on protein annotation or TM vicinity

* Post-GWAS methodology (transcriptome, metabolome, ...)



GWAS WITH RESEQUENCED DATA

GWAS Known Association (marker)

P1

'Ing(P)

1 2 3 4 5 6 7 8 9 10 11 1213 15 17181920

pitfalls of GWAS Chromosome position

« Complicated genetic architecture (large indels, etc.)
« Small data set size with limited phenotype information
 Multidimensional collinearity (chromosomal rearrangements, duplications, etc.)

« Complexity of traits (multiple CMs, multiple alleles, etc.)



GWAS FOR MORE PRECISE BREEDING

GWAS Known Association (marker) P @/{

- 55715604950

'! Distance? LD?

1 2 3 4 &5 6 7 8 910 111213 15 17181920

Assumptions Chromosome position

 There are isolated data sets that can be reused to boost GWAS power
« Additional evaluation criterion (LD independent) is required to improve post-GWAS

« There are not enough user-friendly tools to support the exploration of genetic diversity



PUBLICLY AVAILABLE DATA FOR GWAS

‘ Genotyped (SoySNP50K, etc.) accessions with known phenotype, “n” is large

‘ Resequenced data sets with limited phenotype information (or unavailable), “n” is small

SoySNP50K"-
genotyped

accessions with

known phenotype
(GRIN* > 20k
accessions)

Data set 2

Data set
3

*Song et al.,, 2015  #USDA germplasm collection (GRIN, Urbana, IL)



UNDERPOWERED GWAS FAILS IN CM PREDICTION

GWAS is critically dependent on the data set size, the genotype quality and the phenotype frequency
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« GWAS does not work for very rare phenotypes o



HOW TO IMPROVE GWAS-DRIVEN DISCOVERIES?

By adding power to GWAS!

What is needed? Three novel concepts:

Genotyped
accessions with

known phenotype

« Ajunction between the missing information > Synthetic phenotype Ay S|

« Additional GWAS evaluation criterion > Accuracy

« Concatenated data sets > Curated panel of soybean resequenced accessions

Journal of Advanced Research 42 (2022) 117-133

Contents lists available at ScienceDirect

Journal of Advanced Research

journal homepage: www.elsevier.com/locate/jare
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SYNTHETIC PHENOTYPE

« For GWAS, gualitative phenotypes are transformed into a numerical format; therefore, a genotype can
be transformed the same way

Synthetic phenotype
CM in Glyma.09g278000 A25T
(Liu et al. 2020)
Chr09:45,057,956 genotype

WT Normal REF T
MUT Glabrous ALT A

Real phenotype
(Observed)
Pubescence presence/absence

« Every variant position can be used as a Synthetic phenotype (CM as well as TM)

« Since there is a single gene with a bi-allelic CM behind every Manhattan peak then every phenotype
can be binarized (even for quantitative phenotypes)
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LOGIC OF SYNTHETIC PHENOTYPE: PERFECT GWAS

Prerequisites

Large “n”

A high-quality genotype

Good distribution of a binary phenotype (Pubescence presence/absence)
A single CM in only one gene

50 | '
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Chromosome no.
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PERFECT GWAS

—> The most highly associated variant = CM is a bi-allelic variant at a certain position in genome

1 2 3 4 5 6 7 8 9 10 12 14 15 17 18 19 20
Chromosome no.
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PERFECT GWAS

]
F]

—> The most highly associated v

€

ariant = CM is a bi-allelic variant at a certain position in genome

™~

REF Allele ALT Allele

1

23456?89_1.{] 12 14 15 17 18 19 20
Chromosome no.
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PERFECT GWAS

€

—> The most highly associated v

ariant = CM is a bi-allelic variant at a certain position in genome

REF Allele = WT Phenotype

1

8

9 10 12
Chromosome no.

14

15

17 18 19 20

™~

ALT Allele= MUT Phenotype
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PERFECT GWAS

—> The most highly associated variant = CM is a bi-allelic variant at a certain position in genome

™~

REF Allele = WT Phenotype ALT Allele= MUT Phenotype

Perfect match between
phenotype and genotype

12
Chromosome no.

14 15 17 18 19 20
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PERFECT GWAS

®, —> The most highly associated variant = CM is a bi-allelic variant at a certain position in genome

™~

REF Allele = WT Phenotype ALT Allele= MUT Phenotype

Perfect match between l
phenotype and genotype

100% Accessions 100% Accessions
> 12 15 17 18 18 20 with WT phenotype with MUT phenotype
have REF Allele have ALT Allele

Chromosome no.
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PERFECT GWAS

ariant = CM is a bi-allelic variant at a certain position in genome

™~

REF Allele = WT Phenotype ALT Allele= MUT Phenotype

Perfect match between l
phenotype and genotype

12
Chromosome no.

14 15 17 18 19 20

100% Accessions 100% Accessions
with WT phenotype with MUT phenotype
have REF Allele have ALT Allele

Phenotype and genotype categories are interchangeable
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PERFECT GWAS

What if the genotype does not correlate perfectly with the phenotype?

ariant = CM is a bi-allelic variant at a certain position in genome

™~

ALT Allele= MUT Phenotype

|

REF Allele = WT Phenotype

Perfect match between
phenotype and genotype
100% Accessions

100% Accessions

12
Chromosome no.

14 15 17 18 19 20

with WT phenotype
have REF Allele

with MUT phenotype
have ALT Allele

Phenotype and genotype categories are interchangeable
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LOGIC OF DIRECT CORRESPONDENCE AS A MEASURE OF HOW
WELL A VARIANT POSITION CORRELATES WITH A PHENOTYPE

 Between markers, CMs and phenotypes

a b

Resequenced genotype data Low-density genotype data

Real Real
phenotype phenotype

100%

association
correspondence

] Inverse Landscape of
GWAS for CM

Correspondence
???

association for markers
Real phenotype

[ Landscape of [ Associated ]

« 100% correspondence between P1-CM and the presence/absence of trichomes

» Correspondence between P1-CM and its TM is not perfect
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ACCURACY

« Combination of sensitivity and specificity
* A measure of direct correspondence between variant positions and phenotypes

PG A P I RPN
O

RS S SO A
(9\0 ec)‘o\o 5‘9\0 er,;o\o (9(')\0 e‘oc’\o e(;)\ (’e%%\
O C C C O C O
WT MUT R ST RS

PHENOTYPE Normal/Glabrous . .
GENOTYPE REF/ALT . .

REF ALT

Combined Accuracy Pessimistic = 22.2 % ,

Average Accuracy =50 % [ Combined Accuracy Pessimistic = 22.2 %

WT_Accuracy =50 %
MUT_Accuracy =50 %
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A CURATED PANEL OF SOYBEAN RESEQUENCED ACCESSIONS

« All publicly available resequenced data sets with accessions from over 35 countries CorEE

accessions with
known phenotype

« Soy775: 35.7 M variant positions - 1 glabrous accession (SkrabiSova et al., 2022) Ui

« SnakyVC pipeline: - Soy1066 38.3 M (7, Chan et al., 2023) > Soy2939 44.3 M (18)

Landrace,
44%

Elite, 36%

111

G. soja, |
10% Uncategorized,

Chan et al. BMC Genomics (2023) 24:107 BMC Genomics
https://doi.org/10.1186/512864-023-09161-3

The Allele Catalog Tool: a web-based 2
interactive tool for allele discovery and analysis

Yen On Chan'?, Nicholas Dietz, Shuai Zeng®, Juexin Wang?*, Sherry Flint-Garcia®, M. Nancy Salazar-Vidal*®,
Mdria Skrabisova’, Kristin Bilyeu” and Trupti Joshi'**%"®
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SYNTHETIC PHENOTYPE TO CAUSATIVE MUTATION STRATEGY

(SP2CM)

(SPZCM: Synthetic phenotype to CM strategy

PART 1: Identification of the most accurate tagging marker

/

Low-density
genotyping data

~

L

All
chromosomes

)

PART 2: Landscape of association for a genomic variant

-

Resequenced
data set

Synthetic
phenotype
1

|

~

i

Localized
chromosome

J
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SP2CM — NAVIGATION SCHEME

GWAS e
1]
E .: -Order Variant position Accuracy (%)
y ) -y 1 CM Highest
N 2 Candidate 2
ACCURAC 3 Candidate 3
4 Candidate 4
__HANAL YSIS 5 Candidate 5
) | 6 Candidate 6
™ 7 Candidate 7
L ]
™ ° \0 \ 8 Candidate 8
SELECTION N 3 9 Candidate 9
° Tr,ans't'on from low-to 10 Candidate 10 Lowest
° high-density genotype
C
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CASE STUDIES

Proportional
Protein: SWEET39

MG: E1
MG: E2 Protein: CCT
MG: E3
Pod shattering: Pdh1
Quantitative
Qualitative PUB C: T
FLWRC: W1 PUB_C: Td

STEMTERM: Dt1

PHENOTYPES

Disproportional

Leaf shape: Ln
Stay green: D1

Rare

SCN_R:SNAP18
SCN_R: SHMTO08
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SP2CM DECISION TREE

Real phenotype | Synthetic phenotype

Quantitative / Qualitative
phenotype phenotype

N

Download result

B) EVALUATION *

<\

Proportional | Disproportional | Rare phenotype

| } |

Average | Combined accuracy | MUT and/or
accuracy pessimistic WT accuracy

\

CM IDENTIFICATION



SP2CM IMPROVES GWAS-DRIVEN DISCOVERIES

« Leverages both resequenced and genotyping data

* Helps to decide whether to invest in additional resequencing or phenotyping
 Narrows down the number of candidate genes

« Assists in identifying CM

27



SP2CM IMPROVES GWAS-DRIVEN DISCOVERIES

« Leverages both resequenced and genotyping data

* Helps to decide whether to invest in additional resequencing or phenotyping
 Narrows down the number of candidate genes

« Assists in identifying CM

Identified genes:

Pod shattering: NST1A

Pod color: L1

Seed coat color: O

Soybean cyst nematode resistance: SNAP11

Pubescence density: P1
Pod color: L2
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NEW GENES IDENTIFIED
Pod color L2

? frontiers ’ Frontiers in Genetics

&@ Check for updates
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Natural and artificial selection of
multiple alleles revealed through
genomic analyses
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SOYBEAN APPLIED GENOMICS HUB
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Home Search Browse

4 SoyHub

Welcome to Soy Hub

Tools

Create an Account | Refrieve a Lost Password
Login/Account signup only required for access to private data.

Soy Hub Data Files Analytics Information About
0\ SOYBEAN\KNOWLEDGE BASE (SoyKB)

A web re_soi;rgé‘_fdr Soybean Translational Genomics

Quick Search

A hub for soybean-applied genomics predictions based on a curated panel of diverse soybean resequenced accessions (Soy1066)

Explore variation:

- Find accessions with certain allele

- Find new alleles in known genes

- Explore variation in promoters

- Search TFs

Predict new causal mutations:

- Use GWAS results for prediction

- Calculate Accuracy for your markers or candidate causative
mutations (CM) based on Soy775 35.7M variant positions

- Check genomic context of your variant positions in empowered
haplotype viewer on various resequenced data sets
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SOYBEAN ALLELE CATALOG

£Z Soybean Allele Catalog Tool

Create an Account | Retrieve a Lost Password
Login/Account signup only required for access to private data.

Data Files Analytics Information

I

SOYBEAN KNOWLEDGE BASE (SoyKB)

A web resource for Soybean Translational Genomics
=8

SO

Quick Search

Search by Gene IDs

Dataset: [Soy 1066 Allele Catalog v |

Gene IDs: (eg Glyma.01G049100 Glyma.01G049200 Glyma.01G049300) Accessions: (eg HN005_PI404166 HNOO6_PI407788A)

Search by Accessions and Gene ID

Dataset: [Soy1066 Allele Catalog v |

Example:

IGlyma.01G2491060
IG1lyma . 21G249200
IG1yma . 21G249300

Please separate each gene into a new line.

Please separate each accession into a new line.

Example:
HN@B5_PI4B4166
HNGB6_PI4B7788A

Improvement Status:
Soja Elite Landrace Cultivar

Search

Gene ID: (One gene name only: eg Glyma.01G049100)

Search
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ACCUTOOL: DIRECT CORRESPONDENCE ANALYSIS

Create an Account | Retrieve a Lost Password
Login/Account signup only required for access to private data

Data Files Analytics Information

SOYBEAN KNOWLEDGE BASE (SoyKB)
A web resource for Soybean Translational Genomics

\

£2 AccuTool
Menu
Chromosome Average accuracy filter:
1 v 0 fo 100 Calculate Accuracy

Genomic interval: Combined accuracy pessimistic filter:

0 fo | 2000 0 to | 100 & Download Results

Reference Phenotype: WT accuracy filter:

® WT 0 fo 100

O MUT
Mut accuracy filter:

Choose Phenotype File (.csv):
0 to 100

Browse.. No file selected
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SNPVIZ 2.0: EMPOWERED HAPLOTYPE VIEWER
8P S G -

S O 1) Create an Account | Retrieve a Lost Password
9. ' Login/Account signup only required for access to private data.

Home Search Browse Data Files Analytics Information

e
-

- S
-

SN |
: -S:QY'BEA_N-KNOWLEDGE BASE (SoyKB)

A web re,sd,u'rge]fdr Soybean Translational Genomics
| O

| B

2 SNPViz Version 2.0

Please choose any data you want to compare m

Please select the version, region windows, clustering method and color scheme

Data version: Chromosome: Range Type: SNP Option: O show indel
Wmg2.a2vl v Chr01 v [Choose Type v | [Gene Only v oWInCe
Clustering Method: ®upPGMA O Neighbour Joining

Color Scheme: CGray Scale @MultiColor Scale

Coloring phenotype (optional)
Phenotype Color (template):

Accuracies
Parameters:

Filtering by p-value (optional)

Filter SNPs by p-value range
(example):

GWAS (Public) Soja (Public) NAM_41 (Public) USB_15x USB_40x MSMC Oleic_14_fastq Zhou302_v1.0

No v

Soy775 Modifying Soy775 with 50K positions
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MADIS: MUTATIVE ALLELE DISCOVERY TOOL

S O "y Create an Account | Retrieve a Lost Password
4 Login/Account signup only required for access to private data.

Home Search Browse Soy Hub Data Files Analytics Information

SOYBEAN KNOWLEDGE BASE (SoyKB)
A web resourc{e for Soybean Translational Genomics

L

& Soybean MADis Tool Quick Search | Gene Card [

The Soybean MADis Tool is a mutative allele discovery tool composed of mutative allele position combinative calculations.

Dataset: [Soy1066 v

Gene IDs: (eg Glyma.01G049100 Glyma.01G049200 Glyma. 01G049300)

Please separate each gene into a new line.

Example:
lyma.01G049100
lyma.01G649200

Glyma.01G049300

Phenotype Data Upload: (tab delimited txt or comma separated csv only) | Example Data

| Choose File | No file chosen

* MADis computation starts with 2 variant positions Search




GWAS TO GENES STRATEGY

It can be used for other species too!
» Arabidopsis

* Rice

e Cotton

We offer training!
» Assistance with analyses on our data OR on your own data
» Tools guidance

We are open to collaboration!

» Let's clone genes together
« Let’s identify limitations of different genomes
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Legume

UTILIZATION OF GWAS TO GENES STRATEGY FOR @Generaﬁon
EUROPEAN SOYBEANS & KNOWLEDGE TRANSFER TO
OTHER LEGUMES

Selection of precise markers

« Soybean maturity genes
* Food-grade traits
* Yield-related traits

Identification of new candidate genes

« Soybean maturity genes
» Food-grade traits
* Yield-related traits

Improving pre-breeding for legumes
» Exploration of natural diversity by contrasting the worldwide genetic pool

Funded by
the European Union




JOINT EFFORTS FOR SOYBEAN APPLIED GENOMICS

Legume Genomics Funding
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