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Crop breeding advancement is hindered by the imperfection of
methods to reveal genes underlying key traits. Genome-wide
Association Study (GWAS) is one such method, identifying
genomic regions linked to phenotypes. Post-GWAS analyses
predict candidate genes and assist in causative mutation (CM)
recognition. Here, we assess post-GWAS approaches,
address limitations in omics data integration and stress the
importance of evaluating associated variants within a broader
context of publicly available datasets. Recent advances in
bioinformatics tools and genomic strategies for CM identifica-
tion and allelic variation exploration are reviewed. We discuss
the role of markers and marker panel development for more
precise breeding. Finally, we highlight the perspectives and
challenges of GWAS-based CM prediction for complex quan-
titative traits.
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Box 1. Post-GWAS Glossary

Candidate gene: A gene hypothesized to be involved in deter-
mining
a particular phenotype of a trait but has not yet been proven
experimentally (e.g., by genome editing, plant transformation).

Causal gene: A gene that has been proven experimentally
(e.g., by genome editing, plant transformation, biochemical
characterization of recombinant proteins, etc.) to determine a
particular phenotype of a trait.

Causative mutation (CM): A mutation in a causal gene that
modifies its encoded protein and thus leads to a phenotype
change. CM can directly affect the protein or disrupt its
original transcription pattern (e.g., mutations in promoters).
Often, there are many polymorphisms in a gene that are inherited
as alleles, and currently, the methods that can confirm a
polymorphism to be the CM of the causal gene are limiting
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the progress in crop breeding improvement.

Marker efficiency: A measure of how well a marker can predict a
phenotype, an estimate of direct correspondence between a
variant position and a phenotype (calculated as accuracy).

Diversity panels: A collection of resequenced samples from data
sets aggregated from independent studies that cover every genetic
variant present in the worldwide population of an organism, ideally
curated for missing data (imputed) and mapped to the same refer-
ence genome assembly version.
Introduction
As the global population continues to increase,
ensuring access to sufficient and nutritious food is
becoming increasingly important. To achieve this, it is
essential to increase crop production sustainably.
While traditional breeding methods have been effec-
tive in this endeavor for many years, they are no longer
sufficiently powerful to meet the rising demand for
www.sciencedirect.com
increased yield and quality of produce, as these
methods are time-consuming and constrained by
various factors.

In this context, exploring genomic determinants and

identifying causal genes are crucial for accelerating crop
breeding. Genome-wide association study (GWAS) is a
powerful statistical method that helps uncover the as-
sociation between genomic variants and phenotypes
that represent important agronomical traits. GWAS has
been successfully used for well over 15 years in human
health [1] and is also used to help with plant breeding
improvement. However, GWAS is still limited by
numerous factors such as sample size, phenotype quality
and distribution in the data set, and genotype quality
[2]. Another drawback of GWAS is that it fails to identify

rare alleles or multiple independent alleles of one single
gene [3*].
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Omics-based filtering: GWAS associates genomic regions where
the CM is often masked by frequent false positive variant positions.
Omics-based filtering overlays GWAS data with omics data to
reduce false positives (e.g., transcriptomic data are used to search
for genes expressed in the associated locus). Another powerful
(yet parallel to standard GWAS) way of utilizing omics data is
to input it directly into GWAS as phenotypic data (in-GWAS, not
covered in this review).

2 Genome studies and molecular genetics 2024
Though GWAS and other association studies identify
associated genomic regions that are statistically linked

to traits, these regions are not always causative.
Regardless of the type of genetic feature underlying a
desired phenotype, in GWAS, SNPs are significantly less
prone to technical issues of current sequencing methods
than Indels. Therefore, often, the highest associated
SNP identified in GWAS is not the causal one but is in
linkage disequilibrium (LD) with the causative genetic
feature. Additionally, regression models that are
currently utilized in GWAS are, by their nature,
suppressing false positives on the one hand and inflating
false negatives on the other hand [4]. Many different

approaches can be used following GWAS to narrow down
the list of associated variant positions (SNPs and Indels)
and thus discover the causal gene. One of the traditional
post-GWAS approaches is fine mapping which requires
dense phenotyping or sequencing of large populations
[5]. However, a more commonly used methodology for
gene prioritization for GWAS-based discovery is the
integration of omics data. The most recent approach is
the implementation of machine learning (ML). In
general, these same approaches can also be applied to
post-QTL (quantitative trait loci) analysis. However,

despite advances in the precision of these methods, the
causality of identified mutations can only be
confirmed experimentally.

Here, we focus on recent trends and strategies in post-
GWAS methods that are described in Figure 1.

Integration of omics data in post-GWAS analysis
Post-GWAS analyses are often coupled with omics data
to lower the number of false positives and more accu-
rately identify causal variants. One approach to inte-
grating omics data is to use them directly for association
analysis instead of genotype data. For example, a

transcriptome-wide association study (TWAS) detects
the association between changes in gene expression
(expression QTL/eQTL) and a phenotype [5]. Similar
methods include metabolome (mGWAS), epigenome
(EWAS), and proteome (PWAS) association studies [5].
However, similar to GWAS, the limitation of omic-based
associations is that they identify broad regions of asso-
ciated variants with a likelihood of a high number of false
positives [6].
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Nevertheless, the omics-based prediction can also
inflate false negatives if the analysis is limited to only
one type of omics data or a small sample size [7].
Combining multiple types of omics data reduces the
likelihood of false negatives and positives [8]. There-
fore, integrating multiple omics data types mitigates the
limitations of relying on just a single data type.

Another way to integrate GWAS and omics data is by
identifying causal variants in both GWAS and eQTL
studies [9]. To pinpoint causal genes or mutations from
associated loci using eQTL and GWAS integration, first,
fine-mapping is carried out to identify candidate vari-
ants, and then colocalization methods are used [9] to
assess whether the GWAS and eQTL signals overlap.
Candidate genes are then prioritized and validated using
functional annotations and further confirmed experi-
mentally through methods such as plant transformation
and gene editing.

The integration of reference genomes, pan-genomes,
and multi-omics data into unified databases is crucial
for enhancing data interaction and improving post-
GWAS prediction accuracy. Recent efforts in creating
vast databases resulted in immense multi-omics re-
sources such as SoyOmics for soybean [10*]; CottonMD
database for cotton [11], BnIR for Brassica [12]
ZEAMAP for maize [13], Gramene [14] and Phytozome
[15]. Despite the efforts that were made for these crops,
it is crucial to maximize input data quality and sample

consistency for every species, as these factors are critical
in analyzing multiple datasets from various dimensions.

Although using pan-genome for association studies can
be computationally demanding, it allows for the analysis
of a broader range of genetic diversity. The same omic-
based post-GWAS strategies can then be applied, lead-
ing to the identification of new associated loci. For
instance, recent eQTL mapping using SNPs from a rice
super pan-genome uncovered new candidate genes
related to stress tolerance in rice [16]. In addition to the
aforementioned databases, many others enable users to

analyze multi-omics data in a pan-genome context
thoroughly; for example the BnaOmics database for
Brassica napus [17], grapevine [18], and various other
crops [19].

Marker-assisted causative mutation identification at
the crossroads between reductionism and pan-
genomes
Unlike marker-assisted breeding, where the original
purpose is to select individuals with desirable traits
using molecular markers without extensive knowledge
of causal genes, marker-assisted causative mutation
identification aims to identify causative mutations in
causal genes with the assistance of molecular markers.
www.sciencedirect.com
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Figure 1

The post-GWAS wheel of methods. The scheme summarizes the most common approaches used in the post-GWAS analysis. The methods are
grouped into three areas. The grey area encompasses the methods that utilize the previous knowledge with computational capabilities and algorithms: the
common approaches in the group are represented by ML-based gene prioritization [39,44,59,68] utilization of multiple types of data from databases
[10,13,17,59,68,69], and marker-assisted CM identification [26,27]. The blue area covers methods that add another layer to GWAS results, the omics
data: transcriptomics [16,68,70,71], metabolomics [8,40], proteomics [8,40], or the combination of all of these [7,10,40]. The green area covers methods
that are based on the engineering of genetic information: plant transformation [72], genome editing [71,73,74], and the creation of populations of nearly
isogenic lines (NILs) [71,74]. The arrows between the areas in the post-GWAS wheel indicate that the approaches can be used subsequently or combined
to achieve the best result and compensate for the limits of the individual methods [16,71]. Not all the methods can be used for every crop since the
techniques are often limited for certain species; for instance, sufficient and reproducible protocols for transformation in some plant species are still not
available [75–77]. This illustration was created using BioRender.com.

Post-GWAS strategies in causal gene identification Ka�novská et al. 3
Recent advances in sequencing technologies have led to
the creation of reference genomes for most crops and
have enabled the flourishing of genomics-based pre-
dictions [20]. However, despite the decreasing cost of
resequencing, it remains a challenge for many crop
species. Investing more funds in the extensive rese-
quencing of more individuals across various crop species

would improve both the quality and quantity of geno-
type data, which could then be used to identify the
causative mutations (CM) and accelerate crop breeding.

However, the tendency has been quite the opposite.
Crop breeders are more inclined to develop marker
www.sciencedirect.com
panels associated with desired traits than to identify the
actual CMs underlying the phenotypes of interest. This
trend is understandable, as markers are predominantly
used in modeling for genomic selection (GS), where the
genetic value of individuals is predicted for breeding
purposes. Since the genetic value is an individual’s ge-
netic makeup (genotype) relative to its observable

traits, markers used in GS typically cover complex,
multi-genic traits like yield, protein content, and other
quantitative traits. In contrast to a simple dominant
gene controlling a qualitative trait (e.g., complete loss of
pigmentation in soybean flowers [21]), complex traits
are controlled cumulatively by independent loci, each
Current Opinion in Plant Biology 2024, 82:102658
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4 Genome studies and molecular genetics 2024
carrying multiple genes with varying allelic effects.
Therefore, the markers developed for GS are not
optimal in identifying individual small-effect genes of
complex traits which is often the aim of markers utili-
zation in GWAS-driven discovery.

A recent trend in GS involves reducing the number of
markers in the analysis to avoid the “too much data kills

data” effect based on recent experiences caused by
overall data availability due to faster data generation
than utilization rates [22]. One such example is the
genotyping of soybean, where the number of markers
has decreased from the initial 200K Axiom� SoyaSNP
array [23] and Illumina SoySNP50K DNA bead chip
[24] through 6K and 3K to the recent 1K (Agriplex
Community Soy 1K SNP) marker panel. These reduced
panels of markers have also been used for GWAS, as in
the case of the SoySNP6K marker that was used to
identify causal genes for soybean cyst nematode resis-

tance [25]. At the same time, the widely used practice is
to identify CM based on the predicted annotated
function of surrounding genes or the proximity of such
genes to the marker. However, lower marker density in
the analysis raises the question of how far a CM can be
from its associated tagging marker. Recent research has
shown that markers obtained from low-density geno-
types can be leveraged and used to subsidize missing
Figure 2

Schematics of an idealized marker identification for two different breedin
and BP2 (blue) are idealized breeding programs with unspecified genetic bac
considered to be a Mendelian trait. Therefore, only one single genetic locus i
significance of the associated markers). Regardless of the size of the tested po
be used interchangeably for yield prediction due to their varying efficiency. H
donor alleles of the causal gene underlying high yield. Assuming each marker
markers from other breeding programs can be counterproductive without acc
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phenotypes of resequenced data sets from other inde-
pendent studies, thereby assisting with more precise
CM prediction [26**].

Figure 2 illustrates how markers identified as signifi-
cantly associated (tagging markers) in an idealized
GWAS for yield in two independent breeding programs
(BP) predict the same phenotype of the other BP with

varying efficiency. The scheme rationalizes against
marker adoption without accuracy testing [26**] on a
simplified example. Although it is a common practice to
identify a marker in one BP, validate it in several others,
and use it to screen individuals in future breeding
populations, similar genetic backgrounds of the testing
populations can cause an overestimation of the adopted
marker’s efficiency to predict a phenotype in other,
genetically less related BPs.

The reality of quantitative traits with a polygenic nature

in complex genome crops is undoubtedly more vulner-
able to the failure of adopted markers. Accuracy-based
marker and CM identification have gained support
through recent efforts in testing gene-based markers in
rice [27**]. Therefore, accuracy testing should be
performed routinely to measure the effectiveness of
predicting the direct correspondence between markers
(SNPs) and variant positions (SNPs, insertions, and
g programs (BP) and their efficiency in predicting yield. BP1 (green)
kgrounds aiming for yield increase, here, for the sake of simplicity, yield is
s identified by GWAS for yield in this example (based on the statistical
pulations in BP1 and BP2, the tagging markers identified in GWAS cannot
ere, the fictive parental lines of the two breeding programs bear different
is in nearly perfect correspondence with its high-yielding alleles, adopting
uracy calculation. This illustration was created using BioRender.com.
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Post-GWAS strategies in causal gene identification Ka�novská et al. 5
deletions) or phenotypes. Pinpointing causal features for
both simple and complex traits by a marker-assisted
causative mutation identification approach relies on
accuracy testing, where the variant position with the
highest value is identified as causal. This method helps
distinguish associated from causal variants.

A fundamentally different approach to marker reduc-

tionism involves increasing the number of markers by
using pan-genomes as new references. This approach is
bolstered by the recognition that linear reference ge-
nomes have limitations in genomic-based predictions, as
they fail to capture the diversity within a species and can
distort our understanding of the genomic basis of traits
[28]. However, routine use of pan-genomes is still
constrained by factors such as the availability of large-
scale data storage and the computational demands of
applying them to downstream multi-omics ana-
lyses [29].

Solution for rare phenotypes and multiple alleles
GWAS, as a statistical method, relies heavily on sample

size, genotype quality, and phenotype distribution. A
trending approach to overcome this limitation is to
maximize the input data [30]. Since resources to rese-
quence, genotype, or phenotype excess samples are
often limited in breeding programs, new pipelines for
genomic data aggregation from independent studies
have been developed [31**]. This was demonstrated in
the Synthetic phenotype association study [26**],
where multiple independent resequenced datasets were
aggregated into a single diversity panel and where, at the
same time, substitution of missing phenotypes by the

genotype of a tagging marker resulted in successful post-
GWAS CM identification.

Aggregated data can serve as crop-specific diversity
panels that allow allele exploration and post-GWAS for
rare phenotypes. Recently, strategies for effectively
utilizing publicly available genomic datasets without
introducing substantial biases have been proposed [32]
with a meta-imputation method emerging as a viable
solution [33]. Harnessing broad natural diversity has
already led to groundbreaking discoveries of treasures

that would otherwise stay overlooked, as shown in
wheat [34*].

With the integration of the diverse panels in GWAS, the
chance of more than one CM in a single gene increases.
By its nature, GWAS typically identifies either a variant
position that correlates with all the multiple CMs pre-
sent in the causal gene, or the variant position of the
most frequent CM, rather than detecting all CMs
simultaneously. Recently, the MADis tool has been
developed to enable genomic analysis of natural and

artificial selection by multiple alleles prediction [3*].
The MADis tool is available online for a diversity panel
www.sciencedirect.com
of 1066 soybean accessions [31**] and can also be uti-
lized for private datasets or other species in the form of
an available Python package. After providing the geno-
type and phenotype data, the MADis tool tests for a
combination of variant positions in a gene that explains
most of the phenotype. The MADis tool effectively
identifies multiple alleles in a single gene including also
rare alleles with only a single occurrence in a dataset.

Machine learning and artificial intelligence in GWAS
Machine learning (ML) offers a wide array of algorithms

that can be applied to various types of data analysis.
Given its versatility, it is no surprise that ML-based data
analysis is also applicable to casual gene discoveries. The
choice of the ML algorithm for data analysis depends
largely on the data structure and specific results that are
required [35e37]. The most commonly used ML algo-
rithms for GWAS-based discoveries are regression algo-
rithms [38,39], dimensional reduction algorithms
[38,40e42], algorithms based on decision trees
[38,39,43,44], and neural networks [38,41]. One of the
great advantages of ML-based data analysis, which also

finds application in crop genome research, is its ability to
process large, complex datasets, including those that are
multi-dimensional or have significant amounts of
missing data [35e38]. For these purposes, dimensional
reduction algorithms can be used for data simplification
[37,38,40,42]. Besides the simplification step, algo-
rithms like random forest [43,44] or neuronal network-
based algorithms [38,41,45] can be implemented for
data processing of complex data [35e37].

ML plays a significant role in GWAS-based discoveries,

as it can be applied at various stages of the process [37].
ML algorithms can be used prior to the GWAS to acquire
and pre-process the input data that covers both
phenotype [38,40,41,43] and genotype data [40,42].
This step includes dimensional reduction, which can be
performed on both phenotype (omic, e-traits, and other
complicated data used as phenotype) and genotype data
[40,42]. For phenotyping purposes, neural networks are
particularly useful for image analysis, enabling the
acquisition of phenotype data for large sample
sets [38,41].

During the GWAS itself, an ML-based model can be
implemented [39,46]. Finally, the ML algorithms assist
in gene prioritization in the post-GWAS phase, where
the decision tree-based algorithm random forest is often
used for crops and serves for choosing the causal gene
candidates from the associated loci [39,44]. Last but not
least, phenotype can be predicted from genotype data
by utilizing the Genotype-to-Phenotype (G2P) strategy,
where all regression, decision tree-based, and neural
network algorithms can be implemented [45,47]. To

summarize, ML can improve causal gene identification
in various aspects, depending on the diverse types of
Current Opinion in Plant Biology 2024, 82:102658
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6 Genome studies and molecular genetics 2024
data used for identification and reflecting the natural
diversity and complexity of genomes.

Current computational tools for post-GWAS analysis
This review aims to serve as an inspiring resource for the
current post-GWAS strategies that can be adopted for
more precise and accelerated pre-breeding of various
crops and plant species. Therefore, we have compiled
Table 1

Current Computational Tools for post-GWAS Analysis. The table sum
tion, including the species, processed data type, source, and short d

Tool/Platform name Species Omics data types Integratio
descriptio

QTG-Finder Arabidopsis,
rice,
sorghum

Genomics Gene prio
algorithm
identificat

MODAS Maize Genomics,
phenomics,
transcriptomics,
proteomics,
metabolomics

ML-based
dimensio
eGWAS/m
Mendelia
algorithm
annotatio

MaizeNetome Maize Genomics,
phenomics,
transcriptomics

Data ana

Milletdb Millets Genomics,
phenomics,
transcriptomics,
epigenomics

Data inte
visualizat

BnIR, BnaOmics Rapeseed Genomics,
phenomics,
transcriptomics,
epigenomics

Database
visualizat

RicePilaf Rice Genomics,
phenomics,
transcriptomics

Gene prio
publically

MBKbase Rice Genomics,
phenomics

Data ana

SoyHUB Soybean Genomics,
phenomics

Exploratio
artificial s
prioritizat
soybean
a curated
soybean

SoyOmics Soybean Genomics,
phenomics,
transcriptomics

Database
visualizat
Include G
genotype

KBCommons Soybean,
Arabidopsis,
maize,
other crops

Genomics,
phenomics,
transcriptomics

Crop gen
allele disc
gene prio
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available tools and platforms for post-GWAS analysis of
crop and model species data, focusing on those that are
actively supported, maintained, and updated (Table 1).
It is important to note that none of the platforms offer
an extensive resource that would integrate all the omics
data categories: genomics, phenomics, transcriptomics,
proteomics, metabolomics, and epigenomics. The most
comprehensive omics data platform to date is the maize
marizes the computational tools for crop causal gene identifica-
escription.

n objective and
n

Access/Code source Reference

ritization, ML-based
for causal gene
ion in associated loci.

https://github.com/
carnegie/QTG_Finder

[44]

, gene prioritization,
nal reduction,
etabGWAS,

n randomization
s, and gene
n integration.

https://modas-bio.
github.io/

[40]

lysis by networking. http://minteractome.
ncpgr.cn/qtgfinder.php

[48]

gration, analysis and
ion of results.

http://milletdb.
novogene.com

[50]

with tools for data
ion.

https://yanglab.hzau.
edu.cn/BnIR, https://
bnaomics.ocri-
genomics.net/

[12,17]

ritization, integrates
available data.

https://github.com/
bioinfodlsu/rice-pilaf

[59]

lysis and visualization. https://mbkbase.org/rice [49]

n of natural and
oybean diversity, gene
ion. A suite of tools for
applied genomics with
diversity panel of
accessions.

https://soykb.org/
soyhub.php/

[3,26,31,51–54]

with tools for data
ion and analysis.
WAS and QTL, omic,
, and phenotype data.

https://ngdc.cncb.ac.cn/
soyomics

[10]

omic data integration,
overy and analysis,
ritization.

https://kbcommons.org/ [31,53]
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Post-GWAS strategies in causal gene identification Ka�novská et al. 7
MODAS [40], which, along with QTL-Finder [44], is
one of the few tools with ML-based analysis capabilities.
In addition to ML-based tools, MaizeNetome offers
data analysis by networking [48]. While platforms like
MBKbase [49] and Soyomics [10*] are limited in the
type of omics data they cover, they both support the
visualization of analysis outputs. Milletdb [50], BnIR
[12], and BnaOmics [17] stand out by integrating

epigenomics data, a feature uncommon even in contin-
uously and actively maintained and data-rich databases
for crops such as maize, rice, or soybean.

A suite of tools for post-GWAS analysis of soybean data
[3*,26**,31**,51-54] is available at SoyHUB hosted at
SoyKB [55,56]. KBCommons [57,58], an extension of
SoyKB, supports tools and applied genomics strategies
for other crops and plant species such as rice [53], maize
and Arabidopsis [31**]. Another platform, that integrates
publicly available data, similar to SoyHUB and

KBCommons, is the RicePilaf platform for rice [59*].

Perspectives and challenges of GWAS-based CM
prediction for complex quantitative traits
Improving the predictive power of GWAS for complex
traits remains challenging due to multidimensional
colinearity and polygenicity, as recently reviewed in the
context of neuropsychiatric disorders [60]. The chal-
lenge has been tackled by various approaches, spanning
fitting model improvement and additional data imple-
mentation. An epigenetics-based association study
(EWAS) can identify genes via confounding or reverse
causation, offering an alternative to GWAS [61*].
Figure 3

Progress in causal gene identification on an example of soybean. (a), The
published between January 2000 and June 2024, where GWAS was perform
based on the GWAS-associated locus identification (grey) and the publication
gene (blue). (b), This plot further divides the “candidate gene” group from A
computational, in-silico prediction, E − expression-based or other omics data
genome editing), N − NILs population-based prediction.

www.sciencedirect.com
Another approach aims for computationally more effi-
cient ML implementation of a whole-genome regression
fitting model [62]. Another promising approach in crop
breeding is focused on genome-to-phenome predictions
utilizing ML [47,63]. The complexity of polygenic traits
is complicated by the limited methodology that would
facilitate the prediction of the contribution of the
existing alleles to the mosaic of effects of the multiple

genes underlying a quantitative phenotype.

Data storage and sharing
Data science is a critical component of genomics, and
advancements in science and technology have enabled
data to provide unprecedented levels of information.
This has led to the proposal of the FAIR principles
[64,65]. However, the practical implementation of these
principles can be hindered by several complicating fac-
tors. One key issue is the ’half-life’ of data, which is
significantly influenced by the stability of the data
storage repository. For optimal implementation of FAIR
principles, a stable, long-term repository is essential.
Another challenge lies in the diversity of data types and

formats, which require comprehensive metadata for
effective FAIR applications [64,66*]. Another major
issue in data sharing arises from the identification of
samples. Without a unique identifier for plant materials
that is consistently used across all databases, the ability
to connect and efficiently reuse data is compromised,
diminishing its overall value [64,66*]. Similarly, com-
plications can occur with the naming of genes or gene
products if not standardized correctly. Ensuring unique
and consistent identifiers for both plant materials and
plot summarizes the open-access studies listed on the Web of Science as
ed on soybean. The two categories in the plot group are the publications
s where a subsequent methodology was applied to identify a candidate
into the following categories based on the used methodology: C −

type-based prediction, T − transgenic approach (plant transformation or

Current Opinion in Plant Biology 2024, 82:102658
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gene products is essential to maintain the integrity and
utility of shared data [64].
Confirmation of predicted causal genes lags behind
the identification of candidate genes
Based on our review of the soybean GWAS studies
(Figure 3a), in less than 40 % of these studies, the
associated loci were analyzed by subsequent post-

GWAS analysis. Although our data visualization might
suggest a steady trend, our detailed follow-up investi-
gation revealed that only 24 % of the candidate genes
were confirmed by plant transformation or genome
editing (Figure 3b). We deliberately limited our search
to in vivo confirmations, thus excluding biochemical
characterization of recombinant proteins encoded by
the candidate genes or other such in vitro methods.
This insight into the candidate gene confirmation is
based on soybean, however, the conclusion that bio-
logical confirmation lags behind the identification of

candidate genes can be generalized to other crops with
an even wider gap between the identified versus
confirmed genes since, in contrast to other crops, soy-
bean transformation has been successfully used for
years [67].
Conclusion
Post-GWAS approaches play a critical role in reducing
the number of false positives and facilitating causal gene
identification. By integrating multi-omics data, utilizing
existing data for CM identification, incorporating global
genetic diversity, including pan-genomes, and employ-
ing ML and artificial intelligence, crop breeding can
become more precise and efficient. The limitations of
current approaches in biologically confirming candidate
genes highlight the need for more reliable prediction

methods. Reducing uncertainty in candidate gene lists
would undoubtedly encourage transgenic experiments.
Post-GWAS methods address this need and at the same
time, increased data availability enhances predictive
power. Here we advocate for the generation of high-
quality genomes and reference genomes, adherence to
FAIR principles, adoption of the latest genomic strate-
gies, and enhancement of data storage and computing
infrastructure (see Box 1).
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