Faba bean

Our articles about: - Crops / Faba bean
(43)

Swiss agriculture can become more sustainable and self-sufficient by shifting from forage to grain legume production

Grain legume production in Europe for food, feed and meat-substitution

The European Legume Hub Community

Utilising the pre-crop effect of grain legumes

Components of the pre-crop effect
The pre-crop effect includes two elements: the nitrogen effect and the break crop effect. The nitrogen effect is the provision of nitrogen to the following crop through the nitrogen carried over in the residue from the previous crop. The size of the nitrogen-related effect depends on residue quantity and quality from the legume crop. The break crop effect is due to the reduction in the risk of diseases, pests and weeds in cropping sequences otherwise dominated by another plant family, usually grasses (cereals). These biotic risks are reduced as their life cycles are “broken”. Legumes also improve soil structure and enhance soil microbial processes, which in turn may increase the availability of some nutrients, e.g., phosphorus. Deep rooting in some legumes species such as lupin reduces soil compaction and increases waterholding capacity of soil for the following crop. Phosphorous availability for subsequent crops can also be improved because some legumes are able to mobilise reserves of phosphorus in the soil that are less available to other crops.Farm-level implications
Growth and yield of cereals following legumes is often increased and incidences of pests, diseases and weeds are reduced. In situations where soil mineral nitrogen supply is enhanced by legumes, nitrogen fertilisation can be reduced. This is directly translated into increased revenues and reduced costs for fertilisers and pesticides. In addition, improved quality such as higher protein content can increase the market value of the following cereal crop. Better soil structure caused by tap roots supports higher yields and allows reduced tillage. For instance, no ploughing is needed before the seed bed preparation for the crop following grain legumes such as lupin or soybean. This reduces machinery costs. Quantification and valuation of the effects on crop inputs and outputs are difficult since they are dependent on a range of interacting agronomic and economic variables. Variations in yield effects can be high and current producer prices, costs for fuel, fertilisers and pesticides also largely impact the value of the effect. Additionally, increased revenues and cost reductions are not always realised simultaneously. However, estimations of pre-crop values of grain legumes to subsequent cereals compared to cereal pre-crops allow us to sort the farm-economic relevance of the effects roughly and price scenarios enable us to assess the potential value of the effects in different market situations (Figure 1).

Key practice points
- Grain legumes reduce input costs and increase the yield of subsequent crops because of a combination of nitrogen and break crop effects.
- High fertiliser prices increase the relevance of the pre-crop effect.
- Cereal-dominated cropping systems respond most to the pre-crop effect of introducing legumes.
- The increase in yield of the subsequent cereal crop ranges often from 0.5–1.6 t per ha.
- The yield increase from the pre-crop effect declines (from 2.2–1.5 t per ha) with increasing N fertilisation (from 0–200 kg).
- Estimation of the economic value of the pre-crop value is useful in assessing the effect on an individual farm.
- Models such as ROTOR can help in evaluating the pre-crop effect in rotations (see further information).

Further information
Software tool ROTOR - download: www.zalf.de/de/forschung_lehre/software_downloads/Documents/oekolandbau/rotor/ROTOR.zip
Production constraints and opportunities: A Delphi study within the Legume Translated consortium

Growing faba bean and pea in the Nordic region

Outcome
Useful knowledge on cultivating faba bean and pea under Nordic conditions.Uses of the crops
The most common grain legumes grown in the Nordic countries are pea (Pisum sativum L.) and faba bean (Vicia faba L.). Both provide a good break crop in the cerealdominant monocultures common in many Nordic countries. There is a growing demand for both species, especially as part of the effort to increase domestic sourcing of raw materials for feed, and increasingly for the plant-protein food industry. Pig and poultry production can make use of both crops as feed instead of imported soybean. In cropping systems, they fix atmospheric nitrogen and their residues provide residual nitrogen for the next crop. They are further valued for other attributes such as their ability to break soilborne disease cycles and improve soil structure.Choice of cultivar
There are relatively few well-adapted cultivars of these species available to Nordic farmers on account of the short growing season in the region. The key novelty in faba bean breeding is the reduction in vicine-convicine content (favism factors). These two natural chemicals restrict the use of faba bean for some people and in animal feeds. New cultivars have only 5% of the normal vicine-convicine content and are safe for all consumers. For pea, resistance to lodging (standing ability) has long been the main problem for farmers. Most modern cultivars are semi-leafless, meaning that the true leaves have been replaced by tendrils and the stipules are greatly expanded, restoring the photosynthetic area. These cultivars stand up well because the tendrils form a strong network between plants.Site characteristics
The opportunities for growing faba bean and pea in this region decline with increasing latitude. However, farmers grow faba bean and pea as far north as latitude 63°N. Common parameters for achieving good yield levels include soil type, pH level, water management and drought susceptibility (Table 1). The margins of pH tolerance are tested by farmers, often at the expense of yield. In soils with high organic content, vegetative growth is favoured so there is a greater risk of lodging and late maturity, but experienced farmers can achieve high yields in this situation.
Waterlogging and drought
Waterlogged soils lack oxygen, so roots suffocate. While faba bean is considered more resistant to waterlogging than other grain legumes, the wet conditions favour the growth and spread of diseases. In drought conditions, plants close their gas-exchange pores, preventing both the loss of water and the uptake of carbon dioxide for photosynthesis. When water is not taken up from the soil, nutrients are also not absorbed. Drought can occur at any time in the growing season and appropriate management depends on its timing. Terminal drought, near the end of grain filling, is typical of Mediterranean climates and uncommon in northern Europe. Transient drought in the middle of the growing season can be managed with irrigation, if the infrastructure is available, and plant breeders seek ways of avoiding it through improved root systems. Drought during seedling establishment in May is common in northern Europe and exceptionally hard to manage, since the roots have had little opportunity to find water in the soil. Pea is less sensitive than faba bean to drought, as shown in both 2018 and 2021, when prolonged mid-summer drought reduced mean faba bean yields far more than those of pea. [caption id="attachment_26668" align="aligncenter" width="1024"]
Crop establishment
Inoculation
Both legumes form a nitrogen-fixing symbiosis with soil bacteria classified as Rhizobium leguminosarum symbiovar viciae. Different strains of this bacterium can make 5% differencein the amo unt of nitrogen fixed. It is widespread throughout Europe but the population may not be large enough if the field has no history of cultivation of pea, faba bean or its other hosts. Hence, inoculation with a commercial rhizobium preparation is widely recommended in this circumstance. Intercropping legumes with non-legumes usually increases the nitrogen fixation of the legume as the companion takes up the available mineral nitrogen from the soil. To avoid desiccation, the drying out of the bacteria on the seed, the inoculum is applied shortly before planting – no more than a couple of days; see the video “Inoculating grain legumes” under further information. Sowing takes place in early spring, as soon as the soil is sufficiently warm (about 5°C) and dry enough to take the weight of the seeder, which in Finland is usually at the beginning of May. Faba bean has one of the longest growing seasons of Nordic crops, so on most farms it should be the first to be sown. The shorter growing period of peas (approximately 90 days) allows for more flexibility when it comes to the seeding time. Table 2 shows the main sowing requirements of both crops. Deep sowing helps to ensure access to water for the germinating seed, which reduces the effects of early-season drought, and reduces the risk of predation by crows and pigeons. The water requirement is high due to the relatively large seed size. The target populations are lower for faba bean than for pea. Faba bean cultivars adapted to the Nordic region tend to have small seeds, 300–400 g/thousand, but in climates with longer growing seasons, the most productive beans are in the 500–800 g/thousand range and broad beans for food use can be up to 3000 g/thousand. Peas are generally somewhat smaller than the smaller sizes of faba beans.
Soil compaction and removal of stones
Soil compaction is an issue for both faba bean and pea as it reduces their overall plant growth and yield. Good aeration, deep tillage and deep sowing ensure good emergence and root development. Autumn or spring tillage makes it easier to drill the soil during spring. Other farmers manage well with zero tillage and direct drilling, and yields are widely better in zero-tillage systems. Rolling after sowing presses down stones that can interfere with harvesting and rolling helps to prevent contamination with soil when harvesting.Weed management
Few herbicides are available for use on any grain legume and the crops are sensitive to the residues of herbicides widely used against broad-leaved weeds in previous crops. In practice, this means selecting a field with minimal herbicide residues from preceding crops e.g. cereals. Seedlings of weeds are best controlled before the crop is 5–7 cm in height.Fertilizers
The organic matter content of the soil and its available nutrients determine the amount of fertilizer needed. Fertilizer products that are low in nitrogen are most suitable for faba bean and pea, so the farm can take full advantage of their nitrogen-fixing ability. Although scientific experiments have widely failed to show any benefit of starter nitrogen, many farmers see one, so they apply starter nitrogen fertilizer at 20–40 kg/ha. Phosphorus and potassium fertilization of faba bean and pea is similar to that for cereal cultivation. Potassium, phosphorus and magnesium improve resilience against disease, such as chocolate spot (Botrytis) of faba bean. Micronutrients may also be needed in some soils. For example, molybdenum is essential for nitrogen fixation.Management during the growing season
Disease control
There are several diseases affecting faba bean and pea in the region (Table 3). Farmers have many tools with which to prevent the arrival of crop diseases and pests. To prevent disease outbreaks, the recommended minimum interval is 3 years of non-legume crops between successive legumes on the same field. Fungi such as Sclerotinia and Phytophthora can persist 3–5 years in the soil, whereas Aphanomyces root rot of pea survives for up to 10 years. Fungicide treatment of seeds improves the emergence percentage and protects the crop against some early disease symptoms. The use of such fungicides in some countries requires permits and is not widely practiced in the Nordic region. It is important to inspect the crops regularly for diseases and pests in July, during flowering, so any necessary treatment can be applied in a timely manner, according to the principles of integrated management.

Pest control
In Finland, both faba bean and pea are prone to attacks from aphids, leaf weevils, pollen beetles and pea moth caterpillars as well as birds. Pea moth (Cydia nigricans) caterpillars eat the developing seeds in the pods of many legume species, but given a choice, they will take pea in preference to faba bean, lupin or lentil. Pea moths are detected using pheromone traps that are normally placed at least a week before flowering starts and examined every second or third day. More than ten moths after two consecutive checks indicates that pest control threshold has been reached. Chemical treatment normally commence around 8–12 days after their peak emergence. Adults of the leaf weevil, Sitona lineatus, cut crescents from the edges of leaves and stipules. It is their larvae that do the damage by consuming the developing root nodules. Pyrethrum is the usual insecticide to control this pest and the intervention needs to be early, as once the eggs are laid on the soil, the damage to the roots cannot be stopped. Both crops have aphids, the pea aphid being Acyrthosiphon pisum and the black bean aphid being Aphis fabae. Weather conditions greatly affect the spread of aphids: heavy rain washes off much of the population and a period of intensely dry weather desiccates them. The pest control threshold is reached when 10% of the plants are infested and the weather forecast indicates that conditions are good for the pest rather than for the plant. Genetic forms of resistance to aphids have not been identified in pea or faba bean, so breeding for resistance is unlikely in the near future. Both aphid species over-winter in hedgerows and woodlands. They spread from random landing points near the edges of the field, so a large field is likely to show less damage than a small one. There is some evidence that early-sown crops are more likely to be found by aphids, but this has to be balanced against the other benefits of early sowing in this region. Seed weevils (Bruchus pisorum on pea and B. rufimanus on faba bean) ruin the seeds for food use and reduce their value for feed. Pea weevils have been present in the Nordic region for decades but the bean weevil is a recent arrival. Control is difficult because the eggs are laid within the flower and after hatching, the larva immediately penetrates the seed, so it is protected from most protection chemicals. Early detection with pheromone traps is vital, to be followed by appropriate treatment as advised by the local agricultural consultant. [caption id="attachment_26688" align="aligncenter" width="514"]
Lodging
Lodging makes the crops very hard to harvest. The strong stem of faba bean makes it more resistant to lodging than pea (Table 4). Rain during seed filling increases the risk of lodging. To prevent pea crops from lodging, companion crops with strong straw, such as oat, barley and wheat, are often used. The target is one cereal stem per pea stem, so the cereal sowing rate is 15–30 kg/ha, because at higher densities the cereal out-competes the legume.
Harvesting and desiccation
As the plants approach harvest readiness, first the pods and later the stems turn straw-coloured (pea) or black (faba bean). Lower pods mature before upper ones and when they start to open, it is a sign that harvesting needs to be done soon. Normally, all leaves have fallen by this time. In this region, faba bean is harvested at a moisture content of 18–20% and pea at 20–25%. In warmer climates, the harvest moisture content is 14–15%. Lower moisture content increases the risk of pod shattering and high moisture content allows seeds to get crushed in the harvester. Although the seed coats are thick, legume seeds are more easily bruised during harvesting than cereal grains, so the combine harvester needs to be set up accordingly. The driving speed and drum speed are low, the fan speed high, the flails and screens open. Green pods are returned to the field by adjusting the top screen as they can cause blockages in the combine and other problems later in the dryer. The straw chopper has a lot of work to do in a faba bean crop, especially when the vegetation is dense, so it may need adjustment to make longer chaff. Since some seeds are moister than others and may start heating and rotting, drying is started quickly but proceeds slowly, often in two stages, as the thickness of the seeds prevents the centre of the seed from drying as quickly as its perimeter. The drying temperature is usually 50–60°C. The target moisture content for faba bean is 14.5% (not below 14%) and for pea 15%.Catch crops
After the harvest, the crop residues are rich in nitrogen. Most farmers leave them in place to nourish the succeeding crop. This comes at the risk of loss by leaching or nitrate or emission of nitrous oxide, a powerful greenhouse gas, so current recommendations include sowing a catch crop, cover crop or winter cereal that will start taking up nitrogen promptly. Faba bean fixes about 80% of its nitrogen needs and pea about 70%. The EU project “Legume Futures” estimated that faba bean added about 24 kg of fixed nitrogen per tonne of harvested beans and that pea added about 6 kg. This helps to reduce the need for nitrogen fertilization of the next crop.Pre-crop effect
The pre-crop effect of legumes consists of more than just nitrogen. The activity of the nitrogenfixing bacteria supports other beneficial soil microorganisms. The nitrogen-rich residues help maintain the populations of larger soil fauna such as earthworms. A grass-free legume crop allows some soil-borne pathogens of maincrop cereals to die, so the following cereal grows better. [caption id="attachment_26692" align="aligncenter" width="684"]
Key practice points
The decision to grow peas or faba beans can be based on some guiding questions (nonexhaustive):- Is sowing time an issue? The optimal time for sowing faba bean is very early in the growing season. This poses challenges if the weather does not permit early sowing. Pea can be sown a few days later.
- Are you worried about waterlogging? Faba bean is more tolerant.
- Are you worried about risk of drought? Pea shows more tolerance.
- Do you want a grain legume that is less prone to lodging? In that case, faba bean stands better than pea.
- Are you searching to diversify your crop rotation? Both crops provide nitrogen for the next crop and disease control.
Further information
Stoddard, F. L., 2017. Grain Legumes: an overview. In: Murphy-Bokern, D., Stoddard, F. L. & Watson, C. A. (Eds.). Legumes in Cropping Systems. CABI, Wallingford, pp. 70–87. Schauman, C., Leinonen, P., Mäki, S., Stoddard, F. L., Lindström, K., 2021. Inoculating grain legumes. University of Helsinki. Legumes Translated video.
Continental and global effects

Effects of legume crops on biodiversity

The role of legume production and use in European agri food systems

Heat treatment and dehulling effects on feed value of faba beans

The bean seed beetle in faba bean

The lifecycle
An understanding of the lifecycle is the foundation of control strategies and risk assessments. The beetle has one generation per year. Adults hibernate overwinter in leaf litter and under bark before emerging in April/May. Diapausing adults leave overwintering sites to colonise crops when spring temperatures reach 15°C. Females lay eggs on the outside of developing pods, particularly the lower pods from the earliest flowers. Hatched larvae bore through pod walls and develop within the seed. This concealed position in the seed makes them difficult to control with the insecticides that are currently available. Consequently, the adults are the main target of current control attempts. When fully grown, larvae pupate and young adult beetles emerge around harvest time, leaving a round hole in the bean. These holes are the main source of damage to the crop. Some adults stay within the seed and emerge in store, but there is no subsequent infestation of stored beans.Damage and thresholds
Infestation damages the seed. The weight of individual seeds is reduced by the feeding of the developing larvae within the seed, the nutritional value decreases, and the holes in the seed greatly reduce the quality of the seed. Seed with holes is devalued or rejected due to strict quality standards in both the food (2%) and feed markets (10%). In crops grown for seed multiplication, infestation reduces seed germination and vigour. Furthermore, the presence of live adult beetles in the grain bulk affects access to domestic and international markets.Control
Peak daily temperature is a reliable indicator of the risk of the pest doing damage. Two consecutive days of sunny weather at the time of first pod setting with maximum temperatures above 20°C is an indicator of risk. Pyrethroid insecticides are typically sprayed during the flowering and first pod setting stages targeting adults before egg laying. However, successful control depends on overcoming numerous challenges:- Active substances and number of treatments are limited in the EU.
- Treatment must target the adults and reduce egg laying.
- Control of larvae as they hatch from eggs is difficult because they penetrate the pod immediately beneath the egg case.
- The dense crop canopy can reduce the efficiency of spraying by preventing a proper penetration onto the target plant-organs. Research suggests that angled nozzles gives better control than conventional flat fan nozzles.

Bean seed beetle is an emerging pest of faba bean crops in Ireland
Samples of grain from 48 commercial faba bean crops grown across Ireland in 2018-2020 were assessed by Teagasc for damage associated with bean weevils (holes were adults emerged) to ascertain whether this emerging pest is reaching economically significant levels in Ireland when the crop to be sold for human consumption. The majority of crops (69%) had no seed damage. 17% were damaged with less than 2% of seed affected, 6.3% presented seed damage between 2-5%, and 8.3% presented more than 5% of seed damaged.Key practice points
- There is no threshold for beetle numbers in the crop, however the presence of the pest in the crop should be established prior to insecticide application. This can be done by examining flowers, either by opening the flowers to expose the beetles, or by tapping out the flower heads onto a plastic tray.
- Insecticide applications should take place only when max. daily temperature has reached/exceeded 20°C for two days in a row, and only when the crop has reached the first pod formation stage. Egg laying begins when temperature reaches this threshold, and beetles lay eggs only on pods.
- Insecticides should be used when beneficial insects are not foraging in the crop. As such, applications should take place late in the evening, very early in the morning or at night time.
- Use angled nozzles for applying insecticides.
- More reliable integrated pest management options for this pest are needed.
Further information
PGRO, 2021 CB2104 - CROP UPDATE 4 - 28th May 2021 www.pgro.org/cb2104/ Ward, R.L. 2011 Control of bruchid beetle on broad beans, PGRO. www.pgro.org/downloads/Controlofbruchidbeetleonbroadbeans.pdf
There is a grain legume for every field

Outcome
The main outcome is the identification of a suitable grain legume species for a given farming situation or field. Selecting the right kind of legume crop can affect the yield potential.Length and warmth of growing season
The first thing to consider is whether the cultivated legume can reach maturity in the growing season at the site. The shorter the growing season, the less choice. Of the cool-season legumes, pea is grown the furthest north, followed by narrow-leafed lupin and faba bean. Looking further south, yellow lupin, lentil, chickpea and white lupin are added to the list. All of these species will tolerate cold soils at sowing and mild frosts during early growth. They are less tolerant of high temperatures, above 27°C, than the warm-season legumes. Soybean and common bean are the best-known warm-season grain legumes. Some soybean cultivars will tolerate a degree or two of frost. Generally, these species stop active growth when temperatures fall below 10°C. Hence, the northern limit for reliable production of soybean is currently around the southern edge of the Baltic Sea. [caption id="attachment_24310" align="aligncenter" width="1024"]
Soil texture and pH levels
The next thing to consider relates to the growing site’s soil texture and pH. Unlike the small grain cereals such as wheat, barley, oat and rye, the cool-season legumes, especially faba bean and lupins, are selective about what soil type they grow on best. For example, if the soil is sandy it is likely to have a low pH (acid) and lupins are the best choice for it. The three species (blue or narrow-leafed, yellow and white lupin) can be grown on soils with pH as low as 4.5. Pea, chickpea and lentil are at their best on fields with intermediate soil texture and a pH between 5.5 and 7. Faba bean is the most suitable legume for heavier clay soils with a neutral to alkaline pH of 6 to 7.5 or even 8. Soybean is less sensitive to soil type and the optimal pH level is between 6.3 and 6.5. [caption id="attachment_24314" align="aligncenter" width="1024"]
Lentil and lupins prefer free-draining soils and at the end of the season, need to dry out in order to mature. Narrow-leafed lupin is exceptionally deep-rooting with a tap root that can grow as fast as 2.5 cm per day, so it can reach deep water and nutrients. Its roots have been traced to 2.5 m depth in sandy soils in Western Australia.
Soil compaction and waterlogging are severe problems for grain legumes. If your soil is susceptible to waterlogging, it is worth considering amendment or drainage. Faba bean survives waterlogging better than most of the other legumes, but it does not thrive in such conditions. Mid-season drought disrupts the growth of all the legumes. They stop flowering prematurely, which greatly reduces yield potential. Plentiful organic matter in the soil helps in both aeration and water retention. Later drought impedes seed filling, but terminal drought can be useful when it stops the indeterminate growth of the plant and promotes its senescence and maturity.
Length of day
Most cool-season grain legumes are considered to be day length neutral. In other words, their flowering does not depend on the day length being longer or shorter than a certain value. In contrast, flowering of soybean is suppressed by long days and there is genetic variation in response to day length. In practice, only day-neutral cultivars can be grown reliably north of about 45°N. The day-neutral cultivars result in extraordinary flexibility in soybean. Some farmers have succeeded in growing soybean at 61°N in Finland. Growing legumes is often called “challenging” or “demanding”, but it would be better to consider them as “giving” or “rewarding”. They need a little more attention than spring-sown cereals, especially when growing them the first few time(s), so one can expect to make a few mistakes along the way. Their diseases, pests and stress symptoms look a little different from those of the cereals or oilseeds. By giving them attention and learning their needs, they will repay with high yields and quality. Ignore them and they fail. Where possible, it is wise to sow a catch, cover or winter crop after the grain legume in order to capture its residual fixed nitrogen. [caption id="attachment_24322" align="aligncenter" width="1024"]
Key practice points
- Identifying the right legume crop for your field is dependent on its pH levels and soil texture along with the length of the growing season.
- Good soil conditions are as important for grain legumes as for other crops. Drainage is especially important for lupins and lentil while adequate moisture is particularly important for faba bean.

Dehulled grain legumes for food

Goal of dehulling
Is there a customer requirement for dehulling? Is there a strong market for dehulled seeds for food products and processing? If the answer is yes to any of the questions, then dehulling is something to consider. The main processing goal is to remove the seedcoat or ‘hull’ of the grain legume seed. The dehulled seeds usually split into two, each half being a whole cotyledon or seed-leaf, and the product is often called “splits”. The splits are an attractive yellow, green or red, depending on the cultivar and its pigments. The hulls are 90% lignocellulose, i.e., insoluble dietary fibre, but the cotyledons have plenty of dietary fibre so the loss is not important in the food chain. The other important component of the hulls is tannins that have both positive and negative effects on the product. Tannins are useful antioxidants in the human diet and they add a distinctive flavour, but they are coloured, so they are not desirable in many wet processes, such as protein isolation or making tofu, where additional colours and flavours should be minimized. They cross-link with raw proteins and precipitate them, which is also enabled in a wet process. In a dry milling process such as flour production or dry fractionation, the hull particles form dark flecks in the light-coloured mass of flour. Dehulled beans have a higher protein content than whole beans because of the low protein content of the hull. The hull slows water intake into the intact seed, so a dehulled seed cooks more quickly. The hull keeps the seed in shape during cooking, whereas a dehulled split easily becomes a puree: both are desirable depending on circumstances. Dehulling usually takes a small portion of the cotyledons with the hulls. The value of the fraction is, however, low and its particles are often dust-sized so its use is restricted.
The dehulling technique
Traditional dehulling methods involve thorough drying of the seeds. This is followed by rubbing or pounding with a simple mortar and pestle. In larger commercial units, abrasion is applied, using emery-coated rollers made from silicon carbide. Millstones are typically made of two burrstones with farrows or grooves. The gap between the stones is adjusted to remove the hull with minimal damage to the cotyledons. Uniformity of seed size is clearly important. The brittleness of the seeds needs to be taken into consideration as seed breakage is an issue regardless of the machinery used. Newly harvested beans are harder to process if their moisture content is high. Drying to a moisture content under 14%, often around 12%, is usually needed before dehulling. Large seeds are often more economic to dehull than small ones because their lower surface to volume ratio means that losses are lower. This is considered good for the process as the machine adjustments can be kept the same. Shrivelled seeds do not dehull well because the wrinkles prevent removal of many parts of the hull. Other factors that make the cotyledons soft or fragile, such as altered starch composition, will make dehulling difficult. Ease of dehulling is an objective in several grain legume breeding programmes around the world, particularly for lentil, pea and chickpea. When the hull is firmly attached to the cotyledons, dehulling can be a time-consuming process. Dehulling creates by-products such as seed coats, small particles and broken bits of legumes. These can be sold to livestock farmers or feed compounding companies. More recently, a small demand for faba bean seed coats has developed in the pet food industry. [caption id="attachment_24256" align="aligncenter" width="1024"]
The Arolan Tila processing plant in Finland
The Arola farm in southern Finland specializes in gluten-free and organic crop production. In addition, the farm operates a dehulling line for food-grade legumes. This automated processing line, with sorting and dehulling stages, can process large quantities and achieve consistently high quality. The technology removes impurities, stones and metal debris before dehulling and splitting of the beans. First, the seeds are cleaned of debris, sieved to include seed sizes of 6 mm – 10 mm, and poured into 750 kg container bags. Seeds that are too small or too large are not suitable for processing, mainly due to equipment limitations, and can be sent for livestock feed. The cleaned beans of the correct size are then put through the processing stages described in table 2.

Storing the dehulled product
The dehulled beans are stored in bulk containers (big bags). Processing is done on order, so storage time is minimized. This reduces the exposure to air which starts a process of oxidation that reduces the shelf life of the splits.Logistics
The beans are normally placed in flexible intermediate bulk containers – big bags (approved for food purposes) of approximately 750 kg or 1000 litres of material and transported on euro-pallets. Bagging systems can be flexible and are closely linked to customer requirements, as some consignments prefer sealed paper bags, e.g., canteens. [caption id="attachment_24268" align="aligncenter" width="1024"]
Main practice points
- Dehulled beans are used in the food and feed industry.
- Drying before dehulling improves results.
- Sorting and dehulling with specialized machinery saves time and ensures a good quality end-product.
- Processing on order reduces storage time and reduces risks of spoilage from oxidation.
Further information
Wood, J. A., and Malcolmson, L. J., 2011. Pulse milling technologies, in: B. K. Tiwari, A. Gowen, and B. McKenna, (Eds.), Pulse Foods: Processing, Quality and Nutraceutical Applications. Elsevier, New York, pp. 193-221.
Cultivar selection for spring faba bean

'Bundessortenamt' description of cultivars
The 'Bundessortenamt' provides a descriptive list of faba bean cultivars for use in Germany. The properties of the faba bean varieties included in the list are characterised on a scale of 1 to 9. For traits such as yield, crude protein content, TGW, plant length, etc., grade 1 is a low score for the trait, grade 5 a moderate expression of the trait, and the score 9 a very high expression of the respective trait. Table 1 shows the faba bean varieties described in the BSL including the variety description by means of the grading scale.
Grain yield
At first glance, the grain yield potential of a variety often plays the most important role. This criterion is particularly relevant where the crop is sold under current common trading conditions. In Germany, quality parameters such as protein content or grain size still rarely influence pricing when marketing to the agricultural trade or to processing companies. However, this could change in the future, especially with regard to the use of faba bean in human nutrition. Table 2 shows the average grain yields of faba bean harvested in Germany in the past 10 years.
- Macho
- Stella
- Trumpet
- Bianca
- GL Sunrise
Crude protein content
The crude protein content is particularly relevant to processing companies that feed the harvested faba beans themselves. When marketing to the human sector, higher crude protein contents can lead to price premiums. In the case of trade between arable farming and processing companies, a fair pricing could be realised on the basis of the crude protein content as a value-added ingredient. From the crude protein analyses of the variety tests, the BSA indicates an average crude protein content of approx. 25% (at 86% dry matter (DM)) across all faba bean varieties. This corresponds to approx. 29% crude protein in the dry matter. According to BSL, the following variety has a comparatively high crude protein content:- LG Cartouche (BSL 2020, no longer included in BSL 2021 due to insufficient number of test sites)
- Dosis
- Macho
- Trumpet
Crude protein yield per area
Together with the grain yield potential, the crude protein content results in the crude protein yield per area. Most varieties with high grain yields have rather low crude protein contents, but still perform quite well in terms of crude protein yield per area due to the high mass yield. The crude protein yield per area is also primarily of interest to finishing farms. Especially when it is simply a matter of ensuring the total protein requirement, and less about the last gram of crude protein, i.e., the crude protein concentration, per kg DM of the feed ration. Of the varieties listed in the BSL, the following have a comparatively high crude protein yield per area:- Capri
- Daisy
- Dosis
- LG Cartouche (BSL 2020)
- Stella
- Bianca
- GL Sunrise
- Typhoon
Antinutritive ingredients
Many of the available faba bean varieties contain the antinutritional substances tannin, which is found in the faba bean husk, and vicin and convicin, which are found in the grain. In monogastric feeding, these substances have a negative effect on feed intake and performance above certain concentrations. Tannins can lead to a lower feed intake (bitter substances) as well as to a deterioration in protein digestibility. Vicin and convicin have a negative effect on the performance of laying hens. In ruminant feeding, however, these substances do not play a role. Tannins are even considered to be more beneficial, as they can somewhat increase nutrient stability in the rumen. The content of antinutrients is also relevant, especially for livestock farms. It can therefore make sense to switch to varieties that are free of some or even all of the aforementioned ingredients through breeding. In the field of human nutrition, the parameter of antinutritional ingredients is not yet relevant, at least in Germany. Particularly in the case of low-tannin varieties, however, this breeding success seems to be accompanied by a reduced grain yield capacity. Alternatively, tannin-containing varieties could be hulled before feeding. Varieties with low tannin content are the following, according to BSL:- Bianca
- GL Sunrise
- Typhoon
- Allison
- Bianca
- Bolivia
- Dosis
- Tiffany
Thousand grain weight
The TGW, and thus the grain size, of common faba bean varieties varies in a range from approx. 350 to 750 g. Varieties with a high TGW cause higher seed and sowing costs, as more mass of seed must be used for the same number of seeds per m². Particularly in the case of additionally poor germination capacity, the calculated required seed quantity per ha can exceed the technically feasible maximum application rate, depending on the seed drill. In addition, particularly large faba beans can cause problems with the sowing and conveying technology. If these are not designed to move such large grains, blockages and grain breakage can occur on seed wheels or augers. For human nutrition, large-grain faba beans are demanded and are also better paid. In addition, large-grain, tannin-containing faba beans have a lower tannin content than small-grain tannin-containing varieties. This is due to the fact that the tannins are mainly found in the skin. Due to the surface/volume ratio, the hull of large-grain varieties has a lower proportion of the total grain than that of small-grain varieties. Of the varieties listed in the BSL, the following have a comparatively high TGW:- Apollo
- Fuego
- Macho
- Dosis
- GL Sunrise
- Typhoon
- Trumpet

Susceptibility to disease
As regards susceptibility to relevant faba bean diseases, there are only significant differences between the varieties for faba bean rust. As faba bean rust is relatively heat-dependent, it tends to occur in warmer growing regions. If you are in such a region and have increased problems with this disease, you should rather use varieties that are less susceptible to rust, or be particularly attentive in conventional cultivation in order to be able to react to rust outbreaks at an early stage. Of the varieties listed in the BSL of the BSA, the following have a low to medium susceptibility to rust:- Allison
- Bolivia
- Daisy
- GL Sunrise
- LG Cartouche (BSL 2020)
- Macho
- Stella
- Dosis
- Trumpet
- Typhoon
Key practice points
- The differences between the few available faba bean varieties are relatively large in some characteristics.
- Before choosing a variety, the grower must be clear about the individual conditions and possibilities regarding cultivation and utilisation or marketing. From this, the demands on a faba bean variety can be derived.
- These requirements must then be compared with the available range of faba beans in order to filter out the most suitable variety.
- As new varieties regularly appear on the seed market, it is helpful to find out about these new varieties every year. Promising varieties are tested in independent variety trials of the respective national institutions in "national variety trials" and the results are published.
Further information
The results of the German land variety trials for faba bean can be found under the following links: https://www.demoneterbo.agrarpraxisforschung.de/index.php?id=180 https://www.isip.de/isip/servlet/isip-de/infothek/versuchsberichte
Nutritional value of grain legumes

Protein solubility is not a reliable indicator of rumen degradability
Proteins in less commonly used grain legumes, such as in pea and lupin, are highly soluble and so the in sacco (nylon bag) technique over-estimates protein degradability because protein washes out of bags irrespective of whether it is degraded. Soluble protein from lupin seeds can escape rumen degradation. Recent work with rapeseed proteins showed that soluble proteins can be adsorbed to microbial cells or taken up directly into microbial cells. Both pathways result in more under-graded protein passing from the rumen than would be predicted from protein solubility.Solubility methods produce widely divergent values for grain legumes
It has long been known that factors such as extraction time, pH, ionic strength, and temperature affect protein solubilisation and this seems to be particularly evident for grain legumes. De Jonge et al. (2009) showed that there were large effects of pH on N solubility (Figure 1), with much lower solubility at lower pH levels (5.0–5.6) that are quite common in high producing ruminants.


Key practice points
- The nylon bag technique under-estimates undegradable dietary protein (UDP) supply from grain legumes. Estimates of protein (N) degradability should not be based on in sacco (nylon bag) techniques for such highly soluble feeds.
- Significant proportions of soluble protein can pass from the rumen undegraded. This means that promising grain legumes, such as pea, bean and lupin, may have been under-valued relative to other protein sources, including soybean meal.
- Solvent characteristics, particularly pH, have a very large effect on protein (N) solubility estimates for grain legumes. Low pH (acid condition) leads to lower values for degradable protein.
- This latter effect will also occur in the rumen so that protein degradability values for grain legumes will be much less when included in diets leading to lower rumen pH (5.6 and below). This is potentially a very useful phenomenon because requirements for undegraded dietary protein are often highest in high performing ruminants that are offered higher levels of high concentrate diets, resulting in lower rumen pH. Thus, the under-estimation of protein value of grain legumes may be most pronounced when feeding the most productive ruminants.


Faba bean, grain pea, sweet lupin and soybean for feeding cattle

Faba bean, grain pea, sweet lupin and soybean for pig feeding

Valuing faba bean and pea for feed

Outcome
Numerous scientific studies show that livestock can be successfully fed with protein-rich cool-season grain legumes such as faba bean, pea and others. On the basis of the ‘Löhr substitution method’, it is possible to compare different feedstuffs with standard feeds based on soybean considering energy and protein content. This indicates the point at which an alternative feedstuff costs as much as the feedstuffs currently used, with approximately the same feed value.
This article helps in calculating the approximate equilibrium price of grain legumes in comparison with other protein and energy sources. With the help of this equilibrium price, a decision can be made as to which feedstuffs are economically preferable for the same feed value (energy and protein).
Required information
Some constituents of the feeds to be compared must be known to calculate the substitution value of faba bean and grain pea using the Löhr substitution method. The parameters shown in Table 1 are used.

Calculation aids
There are some freely available Excel-based applications that can be downloaded from the internet. These can be used to calculate the value of a new feed ingredient based on how it substitutes for an existing standard feed ingredient. The Excel application "Comparative value of feed - substitution values of feed" from the Landesanstalt für Landwirtschaft, Ernährung und Ländlichen Raum Schwäbisch Gmünd (LEL) covers a range of animal species and types. It is available for download here: https://lel.landwirtschaft-bw.de/pb/,Lde/Startseite/Unsere+themes/animal-keeping A wide variety of feed ingredients can be selected and compared. For a selected feed component, e.g., faba bean, the programme indicates the substitution price in comparison to two comparable components, usually a protein and an energy supplier such as soybean meal and wheat. It also calculates how much of the previously used feed can be replaced by the alternative feed.Calculation examples
Table 2 provides data for the ingredients of the feeds compared later.


- Standard feed component prices: wheat (€150/t) and soybean meal (€400/t)
- The substitution value of faba bean is €268/t (Table 3).
- Alternative feed component: Faba bean €240/t (purchase price €220/t + €20/t transport and processing)
Limitations of the method
The presented method takes into account the two feeding parameters energy and protein content of feedstuffs. Many other parameters such as crude fibre content, digestibility, rumen resistance, etc., also play an important role in optimal ration design. In addition, many other feedstuffs which influence and complement each other are usually included. Therefore, it makes sense in specific cases to prepare a detailed ration calculation with the alternative feedstuff after calculating the substitution value in order to evaluate it fully and to be able to make a well-informed decision. [caption id="attachment_16501" align="aligncenter" width="1024"]
Key practice points
- A substitution value must be calculated using comparison with the feedstuffs previously used to assess the economic effect of using faba bean and grain pea as alternative feedstuffs.
- The energy and protein contents of the feedstuffs, the purchase prices, and any transport and processing costs must be known.
- The actual calculation can be carried out using freely available software tools.
- If the purchase price of alternative feedstuffs including transport and preparation is lower than the calculated substitution value, their use becomes economically viable. This use should be further checked with a detailed ration calculation.

Disease control in faba bean

Outcome
A better understanding of these diseases in faba bean enables growers to obtain higher yields through the targeted use of fungicides. Yields are more secure and unnecessary prophylactic fungicide measures can be avoided. This protects the environment and helps preserve the effectiveness of the few available active substances.Occurrence and distribution
Faba bean rust is more prevalent in warmer areas of central Europe or in warm summers. Infections usually occur at the middle to end of the flowering period. The disease survives on crop residues, winter emerged plants, other host plants and, to some extent, on seed. The spores are spread by wind. Chocolate spot occurs mainly in regions or years with high rainfall during the summer months shortly before and during the flowering of faba beans. Sclerotia are formed and carry the disease from year to year on crop debris in the soil. The spread within the crop takes place via spores that can travel over long distances.Symptoms
Rust
Towards the end of flowering, scattered 0.5 to 1 mm large, orange rust pustules (uredimia) form on the upper and lower sides of the leaves, and on petioles and stems. Later, dark brown to black spots to 2 mm in size appear. Depending on the time and the degree of infestation, the development of the plant can be disrupted. Early infection may cause leaf fall.Chocolate spot
The disease starts with small chocolate-coloured, splash-like round spots scattered irregularly on the lowest leaves. These spots are usually sharply demarcated by a reddish or grey-greenish margin. In severe advanced infection, the lesions grow, converge and darken. This all reduces the interception of light by the crop canopy. Infection at flowering can cause loss of flowers and young pods. Disease at this time can be particularly damaging as it impacts on both the canopy as the source of assimilate and the pods as the sink that forms yield.Risk factors
Rust
The spores require warmth for germination (optimum 20–25°C) which is why the disease usually only occurs in summer. Approximately 6–18 hours of leaf moisture from dew or rain are sufficient for this. Cooler nights with resulting high relative humidity favour the infection. Dense stands, late sowings, and sudden temperature rises with heat stress increase the risk of infection.Chocolate spot
The occurrence of the disease is linked to humid conditions for several days. The optimum temperature for infectious spore germination is between 15–20°C with a relative humidity of at least 85–90%. The fungus needs at least 70% relative humidity and temperatures below 28°C for several days for the transition to a more aggressive phase leading to further spread within the crop (lesion growth). When the weather is favourable, a second spore generation can be formed 4–5 days after the initial infection. This can cause a second wave of infection in the stand. Chocolate spot disease is promoted by conditions that inhibit drying of the stands. These include heavy weed infestation, high plant densities, and locations sheltered from drying winds. In addition, poor plant vitality, caused for example by nutrient deficiency, soil compaction or viral diseases, reduces the tolerance of the disease. [caption id="attachment_19839" align="aligncenter" width="768"]
Economic impact
Rare severe uncontrolled infection of chocolate spot can cause total loss of the crop. In less exceptional circumstances, yield loss can reach 50% where conditions favour disease spread during and shortly after flowering. However, outbreaks of rust or chocolate spot in the late grain filling stage are unlikely to significantly reduce yield. Infections after flowering can still have an effect on yields, but chemical control at this time is economical only in the case of very heavy infestation. Infections during flowering pose the greatest risk to yield. Intervention with fungicides is justified from an economic viewpoint if the disease is present at the start of flowering and the weather is favourable for its spread. The difficulty of spraying tall crops after flowering without causing a lot of physical damage limits later control.Prevention
Several preventive measures can be taken to reduce the risk of disease and the need for direct intervention. These include growing faba bean no more frequently than one year in six, using seed from healthy crops, and using resistant cultivars. Further preventive measures include the incorporation of crop residues into the soil soon after harvest, maintaining a spatial distance from the previous year‘s cropped areas, early sowing (for spring-sown crops), and effective weed control as well as establishing the optimum plant density.Chemical treatment
Tebuconazole and azoxystrobin are approved for use to control rust and chocolate spot in faba bean in Germany. Tebuconazole is transported with the xylem water flow into the canopy. However, this also results in a dilution effect over time and is therefore active between 7 and 10 days. Tebuconazole has curative properties, especially in rust control, as it attacks the fungal mycelium. Azoxystrobin is systemic within the leaf and protects the plant by inhibiting spore germination. It must therefore be applied before the main infection event, but the effect lasts a relatively long time (up to 20 days). A combination of both active substances may be appropriate to use both modes of action. Repeated treatment may be required where the yield potential and disease risk is particularly high. Chemical treatment is particularly relevant when:- the crop is flowering;
- the environmental conditions point towards a high disease risk and a high yield potential; and
- when the first symptoms of faba bean rust or chocolate spot are already visible during regular crop inspections.

Key practice points
- Prevention is preferable to cure: five years between succeeding faba bean crops and using field hygiene.
- Monitoring of weather shortly before and at the start of flowering helps detect situations with a high risk of early infection.
- Regular crop inspection under conditions that raise risk (persistent high humidity and temperatures around 20°C) helps identify cases where treatment is likely to be beneficial.
- The decision to spray the crop with fungicide depends on the risk of infection, the yield potential and potential loss versus the treatment cost, the crop development stage, and the prevailing and forecasted weather.

Crop rotations with and without legumes: a review

Thermal treatment of faba bean for flavour improvement

Outcome
This article provides useful information on how to denature flavour-affecting enzymes when developing food products from faba beans.Off-flavours in faba bean
Volatile compounds (e.g., aldehydes, alcohols, alkanes, ketones and aromatic hydrocarbons) are the sensory elements that affect the flavour perceptions of faba beans. Some of these compounds cause the undesirable flavour notes in faba bean foods produced using aqueous (wet) processing or fermentation. They emerge when the lipids undergo a process of degradation and oxidation catalysed by lipase, lipoxygenase (LOX) or peroxidase (POX). Lipid oxidation is important to consider as it affects the shelf life of food products. The process starts during harvesting, early processing and storage, when seeds are exposed to temperature, pH and moisture variations along with physical damage that degrade the physical barrier between the enzymes and the fatty acids (free or esterified), glucosides and amino acids within the cells of the bean.Heat treatment
Heat treatment is an efficient way to inactivate or denature enzymes in any material made from faba bean. The treatment needs to be mild so it denatures these heat-sensitive enzymes without cooking the rest of the protein, as the cooked protein cannot be extracted to make a milk analogue or protein isolate. The target temperature is around 65–70°C. Possible heat treatments include microwaving, conventional ovens, steaming or kilning in the production line. Dehulling and milling increase the surface area of lipids exposed to the air and break the cells, increasing the access of enzymes to the lipids. This boosts the formation of unwanted flavour notes. Heat treatment applied prior to dehulling and milling is therefore beneficial. If the beans were dehulled prior to the heat treatment, then the heat-treatment step needs to follow immediately afterwards to prevent the formation of undesirable flavours.Steaming
Hot steam denatures the enzymes of faba beans. The steam penetrates the cotyledons of the bean effectively. Pre-treatment of seeds with hot dry steam is an option for smaller mills. It is regularly used to inactivate the lipases of oats. It is therefore an existing process in many smaller mills that can be applied to faba beans. There are industrial-scaled steamers in Europe available for pre-treatment of grains. The settings on a flow-through oven have been optimised for this purpose in Finland. The timing and temperature have to be determined for each individual oven.Microwaving
Microwaves vibrate the water molecules and the vibration energy transforms to heat. The microwave waves penetrate the cotyledon even more effectively than steam. Research conducted at the University of Helsinki showed that microwave heating (at 950 W for 1.5 min) of small batches of faba beans inactivated the peroxidase and lipoxygenase. Achieving the same result on an industrial scale depends on the size of the equipment and sample size. Like conventional oven heating, the timing and energy level have to be determined for each individual oven. Microwaving has a short processing time and is able to spread high temperatures throughout the cotyledons, faster than conventional oven heating. The application of a microwave treatment for faba beans at an industrial scale would require a microwave-based conveyor belt system. This is not commonly used for pre-treatment of grains in Europe.Testing for enzyme activity
In order to check whether the flavour-affecting enzymes have been denatured, the peroxidase activity can be tested. The minimum heat treatment resulting in inactive peroxidase will result in a product with optimal protein performance and without objectionable flavour. Peroxidase activity is more heat tolerant than lipase and lipoxygenase. If peroxidase activity is successfully inactivated, it is safe to assume that the lipase and lipoxygenase are as well. Peroxidase activity is generally analysed with a guaiacol-H2O2 method. The light absorbance of two solutions, one as the reacting solution and the other as blank, is measured using a spectrophotometer and the enzyme activity is calculated from the result. In the absence of a spectrophotometer, the enzyme activity can be visually assessed. This requires colour models to determine the colour development indicating the strength of the enzyme activity. Such a visual assessment is normally part of a miller or mill technician’s skillset. [caption id="attachment_19371" align="aligncenter" width="616"]
Key practice points
- There are several ways to denature flavouraffecting lipoxygenase and other endogenous enzymes.
- Millers provide important know-how for implementing the treatment effectively.
- Lipase, lipoxygenase and peroxidase activity can be tested using a guaiacol-H2O2 method by spectrophotometer or visual assessment
Further information
Sharan, S., Zanghelini, G., Zotzel, J., Bonerz, D., Aschoff, J., Saint-Eve, A. and Maillard, M. N., 2021. Fava bean (Vicia faba L.) for food applications: From seed to ingredient processing and its effect on functional properties, antinutritional factors, flavor, and color. Comprehensive Reviews in Food Science and Food Safety, 20, 401–428.
Phosphorus fertilisation of faba bean

Outcome
Ensuring a good supply of nutrients, in particular phosphorus, from the soil is the nutritional foundation of high yield. Yield increases after P fertilisation of up to 40% are reported under farm conditions in low P index soils. Good fertilisation practice secures this yield potential while minimising the risk of phosphorus loss to water. Placement of P close to the seed in low P soils supports good P utilisation and ensures optimum use of the investment in fertiliser.Rate of phosphorous application
The above reported evidence on phosphorus supply being particularly important for high yielding faba bean crops grown under low soil-P supply has important implications for production practice in Ireland and in other countries. Faba bean yielding above 6.5 t/ha is common in Ireland. What are the implications for practice and what are the principles that determine these practices? Soil analysis for plant available P is the basis of planning phosphorus applications to all crops. This involves laboratory analysis of representative soil samples following national or regional guidelines. The Irish soil index system categorises soils into one of four soil index levels based on the soil test P result (Morgan extraction). Table 1 shows the P recommendation for each soil index for faba bean.
Soil pH and phosphorous uptake
Phosphorus exists in several different forms in soil and the occurrence of each of them depends largely on soil pH. Plant available inorganic P is most abundant when the pH is between 6 and 7. A whole-farm liming regime that maintains soil pH between 6.5 and 7 over the rotation ensures that the soil phosphorus is most available to crops.Application time and method
Beans as with other legume crops require P for crop growth, from early development to the end of grain fill. Plants require relatively small amounts of P during establishment but have high P uptake during rapid canopy development. Ensuring the availability of P at the establishment phase is essential. This can be from soil reserves or applied P in low P sites. Phosphorus is relatively immobile in soil and so applications on low index soils must be made at or before sowing to influence plant growth (Table 2). Placement of fertiliser in close proximity to the seed (either by placement in the same furrow as the seed or by side banding at planting/seeding) is an effective method of fertiliser application, especially to provide a starter source of nutrient for early crop nutrition and growth. Depending on the soil P status, fertiliser may be broadcast (ideal for higher P sites), with or without subsequent incorporation, or placed close to the seed at planting (which is beneficial on low P sites). Where soil phosphorus levels are adequate, faba bean shows little response to timing and method of application. Where P requirement is high, placing all the P with the seed at sowing may increase the risks of damaging the emerging plant. Incorporation/placement of P at sowing provides a good basis for high yields, especially in low P-soils.
Key practice points
- Research observations indicate that faba bean is responsive to good P fertilisation due to the effect of phosphorus on nodule formation and function. This impacts indirectly on the nitrogen supply from biological nitrogen fixation.
- As a pre-requisite for the effective application of P fertilisers, soil samples must be taken and analysed according to national or regional standard practices to determine the soil phosphorus levels/indices following national guidelines.
- Application methods should take into account soil phosphorus index and the rate of phosphorus to be applied. Placement of P close to seed is important on low P index soils. This is achieved using combined drilling where the fertiliser is placed in or beside the seed row. On high P index soils, placement close to the seed is less important and broadcasting before or after sowing can be used.
Further information
Watson, C. A., Reckling, M., Preissel, S., Bachinger, J., Bergkvist, G., Kuhlman, T., Lindström, K., Nemecek, T., Cairistiona F. E. Topp, C. F. E., Vanhatalo, A., Zander, P., Murphy-Bokern, D. and Stoddard, F. L., 2017. Chapter Four - Grain legume production and use in European agricultural systems. Editor(s): Sparks, D. L. Advances in Agronomy, Volume 144, 235–303. doi.org/10.1016/bs.agron.2017.03.003 Grant, C. A., Flaten, D. N., Tomasiewicz, D. J. and Sheppard, S. C., 2001. The importance of early season phosphorus nutrition. Can. J. Plant Sci. 81(2): 211–224. Havlin, J. L., Beaton, J. D., Tisdale, S. L. and Nelson, W. L., 2014. Soil Fertility and Fertilizers. An introduction to nutrient management. 6th ed. Prentice Hall, NJ. Henry, J. L., Slinkard, A. E. and Hogg, T. J., 1995. The effect of phosphorus fertilizer on establishment, yield and quality of pea, lentil and faba bean. Can. J. Plant Sci. 75: 395–398. The Fertilizer Association of Ireland in association with Teagasc, 2019. The efficient use of phosphorus in agricultural soils. Technical Bulletin Series – No. 4, February 2019 (Booklet). www.fertilizer-assoc.ie/wp-content/uploads/2019/02/The-Efficient-Use-of-Phosphorus-In-Agricultural-Soils-Tech-Bulletin-No.-4.pdf The Fertilizer Association of Ireland in association with Teagasc, 2017. Precise application of fertiliser. Technical Bulletin Series – No. 3, May 2017. www.teagasc.ie/publications/2017/precise-application-of-fertiliser.php The Fertilizer Association of Ireland in association with Teagasc, 2015. Soil Sampling - Why & How? Technical Bulletin Series – No. 1, October 2015. www.fertilizer-assoc.ie/wp-content/uploads/2015/10/Fert-Assoc-Tech-Bulletin-No.-1-Soil-Sampling.pdf
Feeding faba bean to poultry in practice

Home-grown faba bean for organic poultry
Uwe Brede and Babett Löber grow field bean cultivar Bilbo on their organic farm on Domaen Niederbeisheim, near the German city of Kassel. They keep laying hens and young hens, together about 30,000 birds. 100% organic feed rations is a matter of course for them. Faba bean is a valuable home-grown source of protein. They took over the farm in 1995 and switched to organic farming in the same year. Non-inversion (ploughless) tillage was introduced soon after organic conversion. „Today we can till our light limestone soils very efficiently and quickly“, reports Mr Brede. „The minimal tillage system with power harrowing instead of ploughing has established itself and has become an indispensable part of our business.“ Uwe Brede is a pioneer of organic agriculture. He is fully committed to a cyclical flow of nutrients on the farm. Organic seed production and the use of 100% organic feed rations in his laying and young hens is part of this.Participatory plant breeding and cultivar maintenance
Uwe Brede co-founded the Bäuerliche Ökosaatzucht e.G. as a cooperative. One focus of the co-operative is the systematic identification and maintenance of crop cultivars for organic farming. This includes maintaining and multiplying the field bean Bilbo. Wheat, barley, rye, triticale, spring barley, oat and grain legumes are multiplied on the Niederbeisheim estate on around 90 hectares (ha). In addition, in cooperation with a seed company for fine-seeded legumes, red clover is propagated on 20 ha. In total, the farm has around 150 ha of arable land and 27 ha of grassland. There is capacity for around 10,500 laying hens and for the rearing of around 18,000 young hens. “The development of this operation was driven by good local conditions and favourable market developments“ says Mr Brede. “This produces a high-quality organic fertiliser for our crops giving us a good nutrient balance from the closed nutrient cycle“ All eggs are marketed with a partner company. There the eggs are sorted, packed and marketed. The laying hens have been fed 100% organically for years with a consistently good laying performance. A needs-based amino acid supply in the organic rations is important. With purely home-grown protein feed components, this can only be achieved by upgrading the rations using valuable feed components such as oil cakes (Table 1). Dehulling of faba bean enhances the value of the home-grown protein feed components further. This takes place in the on-farm mill where the hulls are separated from the seed and removed via the air classifier. And it works very well: de-hulling increases the protein content from 24 to 36%.
Local faba bean for conventional egg production
Manfred Hermanns keeps 54,000 hens in barn, free range and organic systems. He mixes the feed himself and also uses faba bean as a domestic source of protein. Mr Hermanns is convinced of the advantages of faba bean. „Faba bean is home-grown, has short transport routes, is GM and gluten free, and the crop supports pollinating insects. But it wasn‘t as simple as it sounds right from the start. When I tried to feed field bean to the hens a few years ago, it was a flop. The hens rejected the feed due to the high content of the poorly digestible glycosides vicin and convicin.“ Farmers are now growing new cultivars such as Tiffany, which are low in glycosides and are more palatable for hens. Mr Hermanns started cautiously with a 1% inclusion of faba bean which he increased gradually to about 7% (Table 2). The raw protein content and the content of the amino acids lysine, methionine and threonine were more favourable than expected. This has a positive effect on the health of the laying hens. It took the farmer several years to optimise the ration. The reward is a healthy flock, hardly any problems with feather pecking and pest infestation. And if there are any problems, which can also be caused by external influences such as high tempera-tures, Mr Hermanns uses the opportunity to immediately vary the composition of his own feed ration. „The feed is better and even cheaper,“ says the farmer happily. He has acquired a small feed mixer consisting of three different mills and a conical mixer. He grows 36% of the animal feed himself. Except for soybean, the rest comes from other farms in the region. Mr Hermanns would like to replace the soybean with sunflower meal in the long term. Due to the regional production concept, the eggs cost on average two cent more than comparable eggs from other farms. „This is only possible because we communicate the added value of our products to our customers and because they want to support our idea,“ explains the farmer.
Further information
Bellof, G., Halle, I. and Rodehutscord, M., 2016. Ackerbohnen, Futtererbsen und Blaue Süßlupinen in der Geflügelfütterung. UFOP-Praxisinformation. Jeroch, H., Lipiec, A., Abel, H., Zentek, J., Grela, E. and Bellof, G., 2016. Körnerleguminosen als Futter- und Nahrungsmittel. DLG-Verlag, Frankfurt.
Feeding quality of faba bean for poultry

Nutritional components
The nutritional components of faba bean are summarised in Table 1. Grain legumes are used in livestock feed primarily for their protein content. Faba bean with 12% moisture is about 26% protein. In addition to crude protein, faba bean is high in carbohydrate, especially starch, contributing to the metabolisable energy. The nutrient content of faba bean is influenced by growing condition and the cultivar used. The protein digestibility and amino acid profile are the major determinants of the feeding value. The protein is highly digestible. On the amino acid profile side, faba bean is rich in lysine, but relatively low in methionine and cystine. The limiting factor for the use of faba bean in poultry rations is the low content of methionine. The mineral contents are similar to that of cereals. Faba bean contains less phosphorus than soy and rapeseed meal. The phosphorus is partially bound to phytic acid which reduces phosphorus absorption without the addition of the enzyme phytase.
Anti nutritional factors
Anti-nutritional components adversely affect digestion and animal health. Vicine/convicine and tannins are the most important antinutritive substances in faba bean, followed by protease inhibitors, lectins and saponins. For poultry feed, only low vicine/convicine faba bean cultivars should be used. Using standard vicine/convicine containing cultivars, there is a decline in performance when inclusion rates exceed 10%. In addition, tannins found in the seed coat of dark seeds from dark flowering cultivars reduce food intake due to their bitter taste. Cultivars containing tannins are easily recognisable by their purple flowers, but also by a black spot on the stipules and a darker grain colour. Tanninrelated effects on protein digestibility and enzyme binding play a role only at high inclusion rates (>20%). Other anti-nutritive ingredients such as protease inhibitors, lectins and saponins are present in only small amounts in faba bean and have no adverse effects at typical rates of inclusion.
Feed value
The feeding value depends on the quantity of protein, the nutritional quality of that protein, and the energy feed values determined by the digestibility of the nutrients. Protein quality in poultry nutrition is characterised by the content of the most important essential amino acids, namely lysine, methionine and cysteine, threonine and tryptophan. The digestibility of the amino acids is also important, which varies both, between amino acids and between different grain legumes (Table 2).
Maximum rate of inclusion of faba bean in poultry feed
The quantities used depend on age and performance phase of the poultry. The use of faba bean for poultry is limited by the methionine content (Figure 2). But the levels of vicine/convicine of cultivars also limit use to maximum 10% in feed ration (Table 3). Nevertheless, the methionine content of field bean is more than 20% higher than that of most cereals. This means that faba bean can be used to replace other protein-rich components, e.g., oilseed meals and corn gluten, and synthetic amino acids. A higher proportion of own or domestic raw materials can be used. [caption id="attachment_16578" align="aligncenter" width="550"]
Further information
Bellof, G., Halle, I. and Rodehutscord, M., 2016. Ackerbohnen, Futtererbsen und Blaue Süßlupinen in der Geflügelfütterung. UFOP Praxisinformation. Jeroch, H., Lipiec, A., Abel, H., Zentek, J., Grela, E., Bellof, G., 2016. Körnerleguminosen als Futter und Nahrungsmittel. DLG-Verlag, Frankfurt.
Faba bean, grain pea, sweet lupin and soybean in poultry feeds
This UFOP publication provides an overview of the composition, feed value and possible uses of grain legumes in poultry feed. In particular, the results of feeding trials over the last ten years have been taken into account. For faba beans, both white-flowered and variegated varieties are considered in the brochure. For peas, the focus is on white-flowered varieties, as these dominate the market and are particularly suitable for poultry feed in terms of nutritional physiology. The considerations for lupins refer to the sweet blue and white lupins. The sweet yellow lupins currently play no role in cultivation. However, due to their nutrient composition, they could become attractive again for poultry feed in the future. Full-fat soybeans and soybean cake made from them are the most important feedstuffs from domestic (European) soybean cultivation.

The market of grain legumes in the EU

The market of grain legumes in Spain
This report is part of the transdisciplinary EU research project "LegValue". The present study describes the markets of the main grown grain legumes and shows price differences for grain legumes in Spain. Furthermore, some levers and barriers for the development of legumes in Spain will be highlighted. A mixed-method approach based on quantitative and qualitative analyses was used in this study. The parameters used for the quantitative analyses are production, domestic consumption, imports, exports and producer prices.

The market of legumes in Italy

The market of grain legumes in the UK
This report is part of the transdisciplinary EU research project "LegValue". Work package 3, which deals with the market and economics of legumes, has as an important objective to increase the market transparency of legumes. The present study describes the markets of the main growth legumes and shows price information systems for grain legumes in the UK. A mixed-method approach based on quantitative and qualitative analyses was used in this study. The parameters that were used for the quantitative analyses are production, domestic consumption, imports, exports and wholesale prices.

The market of grain legumes in Germany

Unit values in international trade as price indicators of legumes in the EU

Cultivation of faba beans for regional protein supply: a case study on the association “Rheinische Ackerbohne e.V.” in Germany

Report on legume markets in the EU

Introducing legumes into European cropping systems: farm-level economic effects

Mixtures of legumes for forage production

Grain legumes: an overview

Legume crops and biodiversity

Expensive soy – these are the alternatives for feeding pigs

Establishing high-yielding faba bean

Outcome
Successful establishment of the crop supported by adequate soil water throughout the growing period provides the foundation of exceptionally high yields.Principles
The overall purpose of managing establishment is to produce a fully functioning crop canopy with full ground cover by early May. This enables maximum use of sunlight during the long relatively cool summer day of northwestern Europe. The overall outcome is a result of the interaction between cultivar (genetics, G), environment (E) and management (M): G x E x M. Selecting a cultivar that is well adapted to the environment (location) is essential to optimise G x E. With a well-adapted cultivar grown on a good site, success depends on optimising M: starting with an optimum sowing date, seeding rate, seeding technique and conditions, and follow-up protection of the emerging plant stand.Site
Faba bean is the grain legume of choice on heavy water-retentive soils of northern and north-western Europe. The exceptionally high yields in Ireland come from a combination of early establishment (including autumn sowing), large amounts of light from long summer days over a long period. This favourable combination depends on the presence of a full canopy between mid-April and mid-September with relatively cool weather and little heat stress. Complementing this, the deep rooting of faba bean provides access to water reserves. Ideal sites are also characterised by a soil pH between 6.5 and 7.0, good levels of base nutrients phosphorus, potassium and magnesium, and an absence of serious soil compaction. Lime and base fertiliser applications (phosphorus and potassium) can be made to the crops but these do not fully compensate for low nutrient levels.Sowing date
Sowing under suitable conditions from late February onwards gives rapid germination followed by the quick establishment of a good root system. Slow germination and slow early growth under cold conditions leaves the germinating seed and young seedlings vulnerable to rotting and to attacks from birds, especially crows (species of the genus Corvus). The birds are attracted by the reserves remaining in the seed cotyledons. Weed control is also difficult. Autumn sowing is an option in regions with relatively mild winters, such as Ireland. For such autumn sowing, the aim is to get rapid establishment in warm soils to the point of having young plants that are resistant to pest attack but which are still in the juvenile stage with tolerance of cold conditions throughout the winter. This is generally achieved in Ireland by sowing in October. [caption id="attachment_11562" align="alignnone" width="1024"]
Seeding rate
The optimum seeding rate depends on the target plant population, seed size, and expected rate of establishment (number of plants established in relation to the number of seedssown). The target plant population depends on how the cultivar responds to variation in plant population, the cost of seed, and the expected selling price of the harvested crop. Research in Ireland has identified 30-35 plants/m2 as the optimum in most situations for commercial crop production and for on-farm seed multiplication. This requires the sowing of 35-40 seeds/m2 where 90% germination and 5% field losses are expected. Seed quality is important. Seed damage due to rough seed harvesting and handling affects grain legume species such as faba bean and pea more than cereals. This means that seed germination quality and vigour are important. The following formula calculates the seeding rate in kg seed/ha:
Seeding technique and conditions
For seeding itself there are several options and parameters to be considered. These include the use of conventional drilling in tilled soil or the use of slot seeding in untilled or lightly tilled soil. Combined drilling of seed and a high-phosphorus fertiliser is also practiced by growers of these high-yielding crops in Ireland. [caption id="attachment_11560" align="aligncenter" width="768"]
Seeding technique and conditions
- Faba bean needs water in summer for maximum yield. It grows well in cool climates and on soils with good water retention characteristics.
- Soil compaction reduces yield by up to 40%, so good soil care and seedbed preparation is important.
- The optimum plant population is 30–35 plants/m2.
- Sowing 70–100 mm deep protects the seed and seedlings from birds and herbicides.
- The optimum soil pH is 6.5–7.0 and practice indicates that faba bean responds to high available soil P and K levels.
Further information
Seedtech 2020. The spring bean agronomy guide, website: www.seedtech.ie/en/agronomy/spring_bean Teagasc 2020. Field beans, website: www.teagasc.ie/crops/crops/research/researchprogramme/cropquest/field-beans/
Preparation and characterization of emulsion gels from whole faba bean flour

Feeding faba bean to dairy cows

Outcome
Soya can be substituted using faba bean in dairy cow rations without affecting milk output or compositional quality. Successful use of faba bean depends on the level of substitution and being able to balance rations to maintain rumen bypass protein levels, particularly for higher yielding cows. The use of home-grown or locally produced faba bean opens up opportunities to reduce costs and to exploit markets for soya-free and GM-free dairy products.Nutritional value of beans
Faba bean is palatable and an excellent source of protein and energy, with an energy content of at least the same, if not higher than cereals and similar to that of soya (see Table 1). However, the protein content is significantly lower than soya at only 29% on a dry matter basis. This means that nearly twice as much needs to be fed to achieve a similar protein level in the diet. The protein in faba bean is highly rumen degradable. Similar to pea, the methionine content is nearly a third of that in soya, and so use of beans as the main protein source may require supplementary methionine in order to maintain milk yield and milk protein content.Ensuring the correct balance of rumen degradable protein (RDP) and un-degraded protein (DUP or bypass protein) is important for maintaining milk production in high yielding cows which have a higher requirement for bypass protein. Beans contain anti-nutritional factors, the most well-studied being tannins. Some tannins protect the protein from degradation in the rumen and reduce energy utilisation. However, this is not a concern for fully developed ruminant animals. At high levels, intakes can be reduced due to the presence of tannins, although the white-flowered cultivars have lower levels than coloured cultivars.
Soya substitution effects
Faba bean can successfully substitute soya in dairy rations provided the diets are appropriately balanced. Similar responses in intake, milk yield and composition can be achieved. Researchers at the Agri-food and Biosciences Institute (AFBI) in Northern Ireland reported that feeding medium levels (4.7 kg/day) of faba bean to mid-lactation dairy cows had no detrimental effect on performance. Further research in Northern Ireland looked at feeding various levels of faba bean to freshly calved cows up until 140 days in milk. The concentrate portion of the diet contained either 0%, 35% or 70% field beans (intakes of 0, 4.2 kg and 8.4 kg/cow/day) with constant total protein levels. The diet with 8.4 kg beans replaced all other high-protein ingredients (soybean meal, rapeseed meal and maize gluten). The results show that faba bean can account for up to half of the protein supplement without affecting performance. Milk quality (fat and milk protein content) and milk yield were reduced where faba bean was the sole protein supplement included at 8.4 kg/day. The researchers concluded that faba bean should be included at no more than 4-5 kg/cow/day. Another study looked at completely replacing soybean meal (and partially replacing maize) by including beans at 17.1% of dry matter intake (equivalent to 4.4 kg/cow/day). The control diet with soybean meal and the treatment diet with faba bean matched each other in terms of protein and energy intake and the cows were averaging 41 kg milk/day at the start of the study. There was no effect of treatment on intake, milk yield, fat or protein percentage and fat or protein yield (Cherif et al 2018). Table 2 shows that soya can be substituted with faba bean and additional DUP from protected rapemeal to achieve a similar level of protein, bypass protein and starch content in a diet for a 650 kg cow producing 30 litres of milk at 4% fat and 3.3% protein. The methionine content is lower with the faba bean ration but could be rectified with the inclusion of a rumen-protected methionine supplement such as Metasmart ® (which is 50% rumen protected) to help maintain milk yield and milk protein content. While the above study from Cherif did not appear to adjust the diet to provide a similar level of bypass protein, milk output and milk protein yield were still maintained. This raises the question whether there is over-emphasis on requirements for bypass protein in high yielding cows. [caption id="attachment_9775" align="aligncenter" width="1024"]
Barriers to uptake
While it makes sense to reduce soya imports and rely on more home-grown protein sources, there are several barriers that might limit the uptake of growing or purchasing faba bean to replace soya:- Soya can be sourced from certified environmentally sustainable sources (from areas not affected by deforestation) including from Europe.
- Soya has been the main “go-to” protein source of choice for dairy farmers where it is often the most cost-effective high-protein feed ingredient (compared to rapeseed meal and distillers dark grains) in terms of cost per unit protein. It is also higher in energy than some other protein sources. Its high DUP content adds to its status as the protein source of choice. Moving away from soya requires changing expectations with the adoption of more complex but more resilent feeding regimes.
- Dairy farmers may not have access to land for home-grown bean production. Even for those with arable enterprises, producing faba bean must compete with the other arable crops, including those grown for feeding the herd.
- For farmers who cannot grow faba bean, availability depends on local and regional production, processing and marketing.
Key practice points
- Faba bean can be used as a substitute for soya in dairy rations. Maximum inclusion rate is up to 5 kg/cow/day. Above this, unless the diet is properly balanced to meet DUP requirements, milk yield and protein content are likely to be affected.
- Processing of faba bean is essential for dairy cows due to the hard seed coat. This will prevent the faba bean passing whole through the digestive tract and allows sufficient digestion of the protein and starch. Rolling or coarse grinding is recommended.
- When considering substituting soya with faba bean, cost must be taken into consideration, as well as the potential effect on income from any impact on milk volume and composition changes. Although faba bean (whether home-grown or purchased) will be cheaper on a cost per tonne basis, the financial impact of the change will depend on the relative costs of soya and cereals.
Further information
Johnston D. J., Theodoridou, K., Gordon, A. W., Yan, T., McRoberts, W. C., Ferris, C. P., 2019. Field bean inclusion in the diet of early-lactation dairy cows: Effects on performance and nutrient utilization. J. Dairy Sci., 102 (12), 10887–10902.
Biological nitrogen fixation in legumes

Outcome
The direct effect of improved BNF is higher yielding crops, often associated with higher protein content. About 800,000 tons of dinitrogen (N2) from the air is fixed each year by BNF in cultivated grain and forage legumes in the European Union. The main grain legume crops (soybean, pea and faba bean) account for about one third of this. A high rate of BNF is the foundation of successful and sustainable production. The agronomic success of grain legume crops depends to a great extent on the amount of nitrogen fixed in the nodules of their root systems. This means paying attention to establishing and maintaining the symbiosis between the host plant and the bacteria of the genus Rhizobium and Bradyrhizobium. The total amount of nitrogen fixed usually ranges from 100 to 300 kg N/ha depending on factors such as legume species (and cultivar), length of growing season and environmental conditions. The symbiosis between soil bacteria and legumes promotes nitrogen uptake by the plants themselves and enriches the soil with nitrogen through root exudates and residues, making legumes a preferred precursor to many crops. Growing legumes is a cheap and affordable way to enrich soils with nitrogen. Including them in crop rotations creates favorable conditions for growing subsequent crops with reduced use of artificial nitrogen fertilisers.Role of leghemoglobin and practical consequence
Biological nitrogen fixation is a fascinating process. The rhizobium invades the roots of compatible host legume plants, leading to the development of specialized root structures that we know as nodules. In the nodule, the bacteria reduce N2 to ammonia using the nitrogenase enzyme complex, which is produced within the bacterium. For BNF to progress, the nitrogenase needs to be protected from oxygen. The root nodules protect the nitrogenasebased process from oxygen using an iron-linked protein called leghemoglobin. Leghemoglobin controls the concentration of free oxygen in the cytoplasm of infected plant cells, protecting nitrogenase from oxygen while at the same time enabling the provision of oxygen for respiration in root tissue to supply the energy required. A fascinating part of this is leghemoglobin is closely related to the hemoglobin in blood with an analogous function in transporting oxygen. Like hemoglobin, leghemoglobin is red when charged with oxygen. This explains why healthy root nodules are pink. The presence of a large number of nodules that are pink when split open is a reliable indicator of successful establishment of BNF in legumes crops (Figure 1).Biological nitrogen fixation requires energy
For BNF, the conversion of each molecule of N2 to two ions of ammonium NH4+ requires 16 molecules of ATP. The end result of this conversion requires energy from the host legume plant. Symbiotic nitrogen fixation uses about 4–16 % of host plant photosynthate in faba bean and soybean plants. This energy cost is one of the reasons why grain legumes crops are lower yielding than comparable cereal crops. However, under good growing conditions, faba bean and soybean compensate for the energy demanding BNF by boosting growth further. [caption id="attachment_6136" align="aligncenter" width="689"]
Establishing the symbiosis
Establishing the symbiosis begins with the removal of flavonoids by the bacterium from the host legume plant. This stimulates the synthesis of specific signaling molecules in the bacteria called „nod factors“. Nod factors are required for both bacterial invasion and nodule formation. The molecular structure of nod factors is specific to the different species of Rhizobium. The rhizobial bacteria attach to the tips of the root hairs, causing them to twist forming an ‘infection thread’ structure that allows the bacteria to reach the root cells of the host plant. The infection thread grows towards the centre of the root and the bacteria are released into the cells of the newly formed root nodule where the nitrogen fixation takes place. The bacteria stimulate the host plant cells to produce the leghemoglobin. The nitrogen that is fixed is then available to the whole of the host plant with the result that high yielding legume crops do not require fertiliser nitrogen. Legumes plants form two types of nodules: indeterminate ovoid shaped and determinate round shaped (Figure 2). The nodules are rich in iron and protein providing a rich source of food for larvae of certain weevils (Sitona lineatus and other Sitona species). The leghemoglobin is also so similar to mammalian blood that it is used in substitute meat products.It is important to have the right bacteria
The specificity of nod factors means that each legume has a specific type of symbiotic bacteria in the family Rhizobiaceae: Rhizobium leguminosarum for pea, faba bean, vetchling and lentil; Rhizobium phaseoli for common bean; Rhizobium ciceri for chickpea; Sinorhizobium meliloti for alfalfa and other medics, yellow melilot and fenugreek; Rhizobium trifolii for clover; Bradyrhizobium lupini for lupins; Mesorhizobium loti for sulla and trefoil; Rhizobium vigna for cowpea and other Vigna species, peanut; Rhizobium simplex for sainfoin; Bradyrhizobium japonicum for soybean (Figure 3). [caption id="attachment_6134" align="aligncenter" width="1024"]
Key practice points
Establishing the symbiosis between the nitrogenfixing bacteria and the host legume plant is a key objective for every farmer growing legume crops. In addition to the natural route, significant BNF can be obtained by inoculating the seeds with an appropriate strain of the nitrogenfixing bacteria. Such inoculation is essential for soybean because European soils do not contain the required species. In contrast, European soils contain strains that infect pea, faba bean, common bean and clover, so the response to inoculation is very variable. In some situations, naturally occurring local strains of nitrogen fixing bacteria in the soil are lacking or have low nitrogen-fixing activity. This necessitates the introduction into the soil of selected strains of nitrogen fixing bacteria characterized by high nitrogen-fixing activity. How this is done for soybean is described in detail in the Legumes Translated Practice Note 1. The other practice points arising from these biological processes include the need to protect the root nodules. Pea and bean weevil (Sitona spp.) adults eat the leaves but this has little effect of the crop yield. The more significant damage is done by the larvae feeding on the nodules. Their control is important where infestation is high. Integrated pest management of Sitona spp. including the use of biocontrol and pheromonebaited traps is required is some situations. This must be done according to local best practice and regulations. Due to the energy demands of the process, ensuring that the crop grows well is fundamental to high rates of BNF, which in turn supports further crop growth. This positive cycle explains how high yielding legumes crops are produced under good growing conditions without any other nitrogen source.Further information
AgroBioInstitute, Agricultural Academy, Bulgaria supplies inoculants for soybean, alfalfa and bird‘s-foot trefoil. Other parts the Agriculture Academy supply basic seed of Bulgarian cultivars of soybean, alfalfa, beans, lentils and garden and fodder peas. Pommeresche, R. and Hansen, S., 2017. Examining root nodule activity on legumes. FertilCrop Technical Note. Research Institut of Organic Agriculture (FiBL) and Norwegian Centre for Organic Agriculture (NORSØK), Frick and Tingvoll. Available at https://orgprints.org/31344/ Von Beesten, F., Miersch, M. and Recknagel, J., 2019. Inoculation of soybean seed. Legumes Translated Practice Note 1. www.legumestranslated.eu
Alternatives to soya for dairy cows

Outcome
Soybean meal can be replaced as a concentrated protein source for dairy cows without compromising milk yield or quality. There may be economic benefits depending on the price of soya and other protein sources. Switching to other high-protein feed ingredients is likely to reduce the carbon footprint. In future, milk buyers may reward farmers who do not use soya-based feeds. Since imported soya is the main source of genetically modified products used in agriculture, switching makes production ‘GM-free’. Some of the alternatives (rapeseed meal and legume grains) can be home-grown, reducing the dependence on long supply chains. The information provided here can help the reader decide whether it is in their interests to remove soya from dairy rations, how it can be substituted, and how that might affect milk production.What’s the problem with soya?
A very large proportion of soya used in the European Union and the United Kingdom is imported from North- and South America. Despite a rapidly growing organic soya area in Central Europe, much organic soya used in organic systems comes from China or India. Particularly for soya from South America, there are a range of societal concerns now impacting on public policy and on food markets. This is evident also from the recent Farm-to-Fork Strategy that sets out the European Commission’s vision for the future of agrifood policy. Imported soya is acknowledged as a major link between the European economy and deforestation. It is also the major source of genetically modified products which are rejected in some dairy markets. For example, the German and Austrian dairy sectors are now almost ‘GM-free’. While soya production in Europe usually contributes to diversification of cropping systems, much of the imported soya is grown in simple systems based on soybean monoculture. Concerns about the link between soya and deforestation have been partially offset by the availability of certified sustainable soya. There is a growing interest in declaring and reducing the carbon footprint of food using alternative home-produced raw materials. While soybean meal is an expensive feed component on a per tonne basis, it is widely regarded as the cheapest and default source of concentrated plant protein. Hipro soya is 55% protein on a dry matter basis and so the rate of inclusion is relatively low. This creates more “space” in the ration to include, for example, cereals which are one of the cheapest sources of energy, or more forage. Soya is now the protein source of choice due to its high bypass protein or DUP (digestible undegradable protein) content. It is a particularly good source of ileal digestible lysine. Soya is however low in the essential amino acid methionine. Methionine has a key role in milk protein production and together with lysine, they are the first limiting amino acids for dairy cows. [caption id="attachment_9779" align="aligncenter" width="610"]
What are the alternatives?
The forage and the basic ingredients of the concentrate feeds, usually cereals, provide most of the protein in the diet. Soya or its alternatives supplement this foundation. There are many alternative concentrated protein sources. The most commonly used one is rapeseed meal, which has been proven to fully replace soya with no detrimental effect on milk yield or milk composition. Rapeseed meal is thought to be underestimated in its metabolisable protein content compared to soyabean meal. Many farmers in the UK are replacing soya with rapeseed meal which has been processed (by heat or using chemicals) to improve the DUP content. This is perhaps more applicable to grass silage-based rations which are usually not short in rumen degradable protein. Rapeseed meal also has a more favourable methionine content and so it is likely to benefit milk protein content when substituting for soya. Other commonly used feeds include distillers dark grains (wheat or maize based) as a byproduct from ethanol production. This leaves the question of the suitability of the classical legume protein crops – pea, faba bean and lupin. Currently, these alternative grain legumes can also be considered but they are not always easy to source for industrial feed production, particularly in Scotland. This strengthens their role in home-feed production. With this in mind, Table 1 sets out the basic nutritional information about these alternatives. More of these feeds need to be fed to come close to replacing the amount of protein provided by soya and therefore the total feed cost must be considered to ensure alternatives are cost-effective.
Key practice points
-
- There are a number of alternative feed sources, including other legume grains, that can be used to replace soya in dairy rations, although it may be harder to meet bypass protein requirements with some of these feeds. Careful formulation is required to balance amino acids. Methionine supplementation with a rumen protected source is recommended to maintain milk yield and milk protein content.
- The most common replacement for soya is protected rapeseed meal but others such as extracted rapeseed meal, distillers dark grains and grain legumes (peas, beans and lupins) can also be used alone or in combination.
- Care must be taken when replacing soya to account for any difference in energy and starch content of the alternative products used.
- Cost is an important consideration. Any change in production must be evaluated against the different ration costs to assess whether the change is cost-effective or not.

Further Information
Watson, C., Reckling, Preissel, S., Bachinger, J., Bergkvist, G., Kuhlman, T., Lindstrom, K., Nemece, T., Topp, C.F.E., Vanhatalo, A., Zander, P., Murphy-Bokern, D., Stoddard, F.L., 2017. Grain legume production and use in European agricultural systems. Advances in Agronomy 144, 235-303. Cefetra Certified Soya. www.certifiedsoya.com Donau Soja Organisation provides on its website a daily price information about certified soya meals from European production (‘GM-free’). www.donausoja.org/en/dses-soya-bean-meal-prices/ Fraanje, W., 2020. Soy in the UK: What are its uses? www.tabledebates.org/blog/soy-uk-what-are-its-uses Our videos about: - Crops / Faba bean
(8)

Pulses in monogastric rations

Introducing maize, bean and courgettes into the diet of foraging pigs

How to increase the nutritional value of beans for pig and poultry diets

Using grain legumes in marine fish diets

Bean weevil in faba bean

Growing faba beans for certified seed

Inoculating legumes

Mulch-sowing for spring crops
More about faba bean
Faba bean is commonly known as field bean, broad bean or horse bean. Broad bean is a larger seed type grown for human consumption as a fresh vegetable, while horse bean and field bean are used as dry grains, mainly as animal feed but also in food production. Faba bean is important for sustainable and local livestock feeding and an ideal opportunity to produce GMO-free feed rations. The marketing opportunities for bean for human consumption are developing rapidly in Europe.
Faba bean is an annual legume that is usually sown in spring. However, types well adapted to autumn sowing tolerate frosts down to -15 ° C after a hardening phase.
Faba bean grows up to 1.8 m high and can branch.There are no tendrils. The flowers are white to purple and have a strong, sweet scent that is attractive to bees and other pollinators. The colour of the seed ranges from light to dark red-brown..
Faba bean performs well on relatively heavy, neutral to acid, soils that provide a steady supply of water over the growing period. Faba bean should not be grown more frequently than one year in five to prevent the build-up of soil-borne diseases and pests, especially during flowering and early pod formation. Light soils are only suitable if there is sufficient rainfall or a high groundwater level. Faba bean is sensitive to waterlogging and soil compaction.
Faba bean has a high crude protein content of 26 to 33 % in seed dry matter. Yields of grain types range from 3.0 and 7.0 t/ha with maximum yields of 10 t/ha, depending on the location and the cultivation system.